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1. Introduction

With network security technologies playing a more and more important role in people’s economic 
activity, cryptographic protocols, as the main techniques that support network security tech-
nologies, are increasingly used in many kinds of security applications. On the other hand, to evade 
inspection by IDS, some malwares leverage cryptographic protocols to hide their communications. 
However, due to the complexity and diffi  culty of its design and implementation, the protocol itself 
or its implementation programs inevitably contain various fl aws and vulnerabilities. For example, 
Shaikh and Bush have applied process algebra CSP (Communicating Sequential Processes) and 
Schneider’s rank function theorem to the Woo-Lam protocol (Woo and Lam, 1992) to expose fl aws 
in its design (Shaikh and Bush, 2005).
For security applications, identifying such fl aws is crucial to improving their security; meanwhile, 
for malwares, discovering the vulnerabilities used in their protocols off ers a new way to fi ght 
against them. For this reason, a methodological framework, which is based on dynamic binary 
analysis technology to reverse derive the protocol specifi cation and discover the vulnerabilities of 
network applications. Nevertheless, it is necessary to solve a crucial problem before achieving this 
goal: how to derive the encrypted message format from dynamic execution of the cryptographic 
protocol application.
In this paper, the approach taken is mainly based on the technologies of protocol reverse engineer-
ing. Commonly, protocol reverse engineering is a manual, time-consuming, tedious, and error-
prone process. To improve this situation, some researchers have recently presented certain kinds 
of automatic reverse engineering approaches, which can be categorized into two classes: network-
based and program-based. For the network-based approach, representative research includes the 
Protocol Informatics Project (Marshall, 2004) and Discover (Weidong et al, 2007). This kind of 
approach commonly locates fi eld boundaries from a large number of network traces by leveraging 
the sequence alignment algorithm, which has been used in bioinformatics for patt ern discovery. 
The great advantage of this approach is its simplicity and ease of implementation. However, the 
disadvantage is also obvious; it inevitably cannot obtain semantic information only from the 
network traces. Moreover, according to the cryptographic protocol specifi cation, the messages 
may have been encrypted during their transmission through the network. Therefore, unless a 
decryption of the encrypted messages is available, it is not possible to use this kind of approach to 
reverse extract a message format from any cryptographic protocol packet. For the program-based 
approach, representative studies include Polyglot (Caballero et al, 2007), AutoFormat (Zhiqiang et al, 
2008), Tupni (Cui et al, 2008), Prospex (Comparett i et al, 2009), ReFormat (Zhi et al, 2009), Dispather 
(Caballero et al, 2009: Juan et al, 2009), and others. In contrast to the network-based approach, the 
program-based approach extracts the protocol format based on how a network program parses 
and processes a protocol message, which reveals plenty of information about the message format. 
Therefore, the program-based approach can be more accurate and has more obvious advantages 
than the network-based approach.
In this paper, ProtocolFormat is proposed, which is a system that aims to extract accurately the 
message format for encrypted messages sent by a security application. However, unlike Dispather, 
ProtocolFormat simply extracts the message format from received messages, and it is possible to 
extract the message format of sent messages from the other side of the protocol session. This paper 
also presents a novel technique to infer the fi eld semantics of encrypted messages received by a 
security application. The proposed approach is based on the observation that standard library 
functions, which are used in security applications, reveal rich semantic information about the 
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message format. On the other hand, ProtocolFormat is mainly based on dynamic taint analysis 
technique (Newsome and Song, 2005), which taints the network input and observes how the 
tainted data propagate during the execution of a network program. The authors have implemented 
a prototype of the techniques based on the latest release of Valgrind (version 3.6.1) (Nethercote and 
Seward, 2007; Nethercote, 2004). ProtocolFormat is used to analyze the SSL handshake protocol, 
FTP SSL, and an unknown protocol used by a security communication application. The experi-
mental results are exciting; ProtocolFormat is able to extract the hierarchical message format of the 
encrypted messages with high accuracy.
The rest of this paper is organized as follows. Section 2 defi nes the assumption and describes the 
problem scope of this paper. Detailed system design and key techniques for extraction of encrypted 
message format will be presented in Section 3. Section 4 describes implementation and evaluation 
results. After discussing related work in Section 5, the limitations of ProtocolFormat will be analyzed 
and possible improvements suggested in Section 6. Finally, Section 7 concludes the paper.

2. Assumption and Problem Scope

2.1 Assumption

In order to achieve security transmission, the implementations of all kinds of cryptographic proto-
cols commonly encrypt their communication. Thus, it is diffi  cult to obtain any semantic information 
from network fl ows, which makes it impossible to analyze this type of network application by 
simply using the network-based approaches. The solution proposed by this paper is to observe 
how network application parses network messages. Moreover, for the sake of making our solution 
feasible, we introduce two assumptions as follows:
a) Standard Library Function. We assume that cryptographic protocol applications deal with 

messages adopting standard library function. For instance, network socket library function 
“recvfrom”, “recv”, and others, are called by these applications when receiving messages. At the 
same time, messages are decrypted by calling standard decryption library functions, such as 
“EVP_Decryptlnit_ex”, “EVP_DecryptUpdate”, “EVP_DecryptFinal_ex” from OpenSSL;

b) Message Parsing Process. Many cryptographic protocol applications parse network messages 
according to a fi xed patt ern. Therefore, for simplifying the reverse analysis, we assume that the 
message parsing process can be divided into four phases: (1) receiving network package, then 
extracting the message payload from this package and storing it in a memory buff er; 
(2) extracting fi elds from the message and parsing them respectively; (3) if the message has 
encrypted message fi elds, the network application needs to decrypt them fi rstly, then parses 
the decrypted message fi elds normally; (4) end-of-message parsing.

2.2 Terminology

Generally, a message format is a predetermined or prescribed spatial arrangement of the parts of 
a message. This paper uses tree structure to express the message format, which reveals the hier-
archical and nested structure of a network message. In the following, we give a formal defi nition 
of message format.
Message Format (MF). Let mf be a message format, mf can be viewed as a union of message fi elds 
set T and relationship set R, mf = (T,R). T contains n (n > 0) elements, T = {(f,s,c)|f ∈ F }. F is the set 
of message fi eld types which describe the att ribute of the message fi eld. In the current version of 
our system, F supports the fi eld types of Length, Text, Binary Data, Key, RSA Encrypt, DES Encrypt 
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and AES Encrypt. s is a nature number that denote the fi eld length, and c is the content of this 
message fi eld. R is the set that describes the relationship between message fi elds within T, R = {(ti, 
tj, r)|ti, tj ∈ T, r ∈ ϒ}. ϒ is the relationship types set, which includes Father-Son, Son-Father, Older-
Younger Brother, Younger-Older brother and Other relationship.

2.3 Problem Scope

The goal of protocol reverse engineering is to extract protocol format, which includes protocol 
message structure and protocol model that can be represented as a protocol state machine or 
protocol specifi cation. Reversely extracting protocol model commonly comprises two steps: 
Firstly, given a set of network packets, this technique extracts the message format for each protocol 
message; secondly, given a set of message formats, it infers the multiple message types that 
comprise the protocol, and extracts the state machine that represents the running process of the 
protocol and the protocol specifi cation that formally describes the protocol.
This paper only deals with the fi rst step of the protocol model extraction. The goal of the proposed 
approach is to derive the message format of received messages (especially the encrypted message) 
by observing the dynamic execution of message parsing process in network program. However, 
there are two main challenges the authors have to face: the fi rst one is to infer message fi eld 
seman tics that will be used in the future work to reverse infer protocol model. In this paper, we 
focus on typical fi eld semantics, i.e. length, timestamps, encryption, hostnames. The second one is 
accurately locating the phase transition points during the dynamic execution of network appli-
cation which is more diffi  cult. According to the assumption, the message parsing process is 
divided into four phases, however, cryptographic protocol messages commonly consist of several 
plain-text fi elds and encrypted fi elds, and even worse, there may be other encrypted fi elds in an 
encrypted fi eld. Take SSL Handshake Protocol (Eric, 2001; David and Bruce, 1996) as example, 
which is responsible for “secure session establishment” between two network applications, the 
server and the client interact with each other with several types of messages during the handshake 
phase, and every message type consists of several (encrypted) message fi elds. Table 1 shows the 
message types of SSL handshake protocol and the corresponding number of their message fi elds.

 Message Type Message Fields Encrypted Message Field 
 ClientHello 9 0 
 ServerHello, Certifi cation, ServerHelloDone 24 0 
 ClientKeyExchange, ChangeCipherSpec, Finished 16 4 
 ChangeCiperSpec, Finish 11 4

Table 1: SSL Handshake Protocol

Consequently, a new approach is required to locate the transition points that identify which 
message parsing phase the cryptographic protocol application is in. The intuition behind our 
approach is simple and eff ective: the standard library functions contain enough semantic infor-
mation to illustrate what the program is doing. According to the assumption, cryptographic 
protocol application decrypts incoming messages by using standard decryption library, such as 
DES_Decrypt() and AES_Decrypt() in OpenSSL cryptography library. These cryptography library 
functions are so powerful that they are widely used in most security applications, even malwares, 
such as Agobot. In order to support the calling of library functions from external program modules, 



149Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014 

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

library fi le must export the function symbols and the corresponding entry address in the fi le. As a 
result, the transition points can be located by searching the instruction address where the 
cryptographic protocol application calls these library functions.

3. System Design

3.1 Approach Overview

Figure 1: ProtocolFormat Working Process

Depending on the aforementioned approach that locates the transition points between two 
message parsing processes, the working process overview of the proposed system is shown in 
Figure 1. The simulative execution of cryptographic protocol application is under ProtocolFormat, 
therefore, the working process of ProtocolFormat shown in Figure 1 corresponds to each message 
parsing process in cryptographic protocol application. 
According to the characteristics of standard library functions called in diff erent message parsing 
phases, the proposed system works as follows: 
1.  Network Packets Receiving. In this phase, cryptographic protocol application reads off  mes-

sage data from network packets. There are a limited number of standard library functions 
accomplishing the task, such as read, recv, recvfrom, recvmsg, which are capable of reading off  
network fl ow from a socket. Thus, the call addresses where the application read off  network 
packet from the network is the source point to start the tainted analysis, and ProtocolFormat 
fi rstly marks the buff er that stores the received message as a tainted buff er after the application 
completing these function calls, and then tracks and traces the taint propagation during the 
execution of the application. For the mark operation, we will introduce it in section 3.2.2.

2. Extraction and Parsing of Message Field. Generally, a cryptographic protocol message consists 
of several message fi elds, such as length fi eld, encrypted fi eld, and others. Therefore, before the 
cryptographic protocol application further parses message fi elds, we assume it must fi rstly 
extract the corresponding message data from the receive buff er, and this process commonly is 
accomplished by calling the standard memory operation function, such as memcpy. For this 
reason, ProtocolFormat needs to observe all data movement instructions that take the receive 
buff er bytes as input and the functions that the data movement instructions belong to. 
Meanwhile, ProtocolFormat marks the destination buff er of memory operation as tainted buff er 
and every byte in the tainted buff er as tainted data. After that, ProtocolFormat tracks a small 
subset of x86 instructions that take the tainted data as source location, and records the relevant 
information on a tainted tab (introduced in section 3.2.3) that associates with this tainted data. 
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In addition, these instructions simply move tainted data around, but without modifying it. For 
some tainted data that there isn’t any decryption function call take as input parameter until the 
cryptographic protocol application completes the message parsing, we mark them as plaintext, 
and divide the ones that have the similar dependency chain into a plaintext fi eld (dependency 
chain will be introduced in section 3.2.2). Nevertheless, for the other tainted data that decrypted 
functions take as input parameter, we mark them as ciphertext, and divide the ones that 
possess the same dependency chain into an encrypted message fi eld (comparing to plaintext 
tainted data, the last called function in dependency chain is a decrypt library function call).

3. Decryption and Processing of Encyrpted Field. Due to messages sent among diff erent crypto-
graphic protocol applications being encrypted, it is necessary to identify the memory buff ers 
that hold the decrypted data when the decryption operation fi nishes. In ProtocolFormat, we 
observe whether the call instructions for decryption library functions are executed; if the 
decryption functions take the tainted buff er as source argument, then the decryption buff er 
will be marked as a tainted buff er, and the source buff er will be marked as an encrypted 
message fi eld. In this paper, we focus on these decryption standard library functions that 
belong to cryptograph library OpenSSL, such as EVP_DecryptInit_ex(), EVP_DecryptUpdate(), 
EVP_DecryptFinal_ex(). After the application has decrypted the encrypted message fi eld, we 
assume that it will further parse the decrypted message fi eld. Therefore, the following task of 
ProtocolFormat is a recursive process. During each iteration, it marks the source buff er as an 
encrypted message fi eld and marks the new decryption buff er as a tainted buff er. The iteration 
continues until the application fi nishes the message parsing process.

4. End-of-Message Parsing. Unfortunately, for lacking of enough knowledge about the protocol 
message format, it is diffi  cult to identify the point when the cryptographic protocol application 
is fi nishing the message parsing. In ProtocolFormat, two approaches are used to overcome this 
diffi  culty (introduced in section 3.2.3). After the end transition point of the message parsing 
has been located, ProtocolFormat will construct a “message parsing process tree” according to 
the tainted information that associate with the tainted data. In a way, “message parsing process 
tree” describes in detail how the cryptographic protocol application process an incoming 
message, thus it is enough to derive the message format from this tree, and the detail will be 
introduce in section 3.2.4.

3.2 System Architecture

According to the diff erentiation of function defi nition, the proposed system consists of fi ve key 
modules as shown in Figure 2:

Figure 2: ProtocolFormat System Architecture

Instruction Execution Monitor. By instrumenting the data movement instructions as well as call 
instructions, this module can observe the dynamic execution of a cryptographic protocol appli-
cation. Moreover, by observing program execution, the module can intercept network-received 
function call, memory-related function call and decryption function call, and taint-mark the result 
buff er.
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Taint Marking and Managing Module. This module provides other modules with taint-mark 
operation. Meanwhile, it also takes the responsibility for managing tainted information associated 
with the taint data.
Phase Profi ler. According to the information that is provided by instruction execution monitor, it 
could infer which phase the cryptographic protocol application is in, and inform other modules to 
do the corresponding operation. 
Field Semantics Inference Engine. Based on the semantics of function and instruction that operate 
on tainted data, this module infers the semantics of each byte and fi eld in messages.
Message Format Constructor. When the cryptographic protocol application fi nishes the processing 
of an incoming message, this module fi rstly constructs “message parsing process tree”, then 
creates message format from this tree.

3.2.1 Instruction Execution Monitor

Figure 3: Instruction Execution Monitor Architecture

 Instruction Instruction Description

 call Call Procedure
 mov Move to/from Registers/Memory
 movsx Move with Sign-Extension
 movzx Move with Zero-Extend
 push Push Word or Doubleword Onto the Stack
 stos Store String
 pop Pop a Value from the Stack 
 xchg Exchange Register/Memory with Register
 bswap Byte Swap

Table 2: Instructions that ProtocolFormat handles

The architecture of instruction execution monitor as shown in Figure 3. Similar to previous 
program-based approaches, ProtocolFormat also needs to monitor the execution of a cryptographic 
protocol application. However, unlike the others, it is just interested in a small subset of x86 data 
movement instructions. The list of the subset instructions is described in Table 2.
Shadow call stack manager. For the function call instructions, we obtain the run-time shadow call 
stack by instrumenting this kind of instructions. Although we can traverse the current stack frames 
to acquire the run-time call stack information, and if the debug information is embedded in the 
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binary, we can even obtain the relevant function names from the return address, noting that this 
method works well only when the program or library is built with stack frame pointer support. 
For overcoming this problem, we design shadow call stack manager to maintain a run-time 
shadow call stack inside the execution monitor. The shadow call stack contains the call instruction 
address, function name, call address, and call arguments for all the functions called so far. The 
working process of the shadow call stack manager can be divided into four phases:
a) When cryptographic protocol application is executing a function call instruction, shadow call 

stack manager extracts the call address, called function name, instruction address, and argu-
ments of this function call. For obtaining the called function name, if debug info is available, 
Valgrind supports a convenient way to derive the function name from the call address. For 
obtaining the values of call arguments, fi rstly, shadow call stack manger query the Standard 
Library Function Information Database, if the called function is a standard library function, we 
will obtain the defi nition and semantic information of the parameter from this database, and 
then acquire the value of each parameter by traversing the stack frame. Otherwise, if the called 
function is not a standard library function, we will get nothing after querying the database, so 
just set the call arguments of this function call to NULL.

b) The next step is to obtain call-type of the called function. In the proposed system, we defi ne 
four kinds of call-type: they are network receiving call “R”, memory copy call “M”, decryption 
call “D”, and other call “O”. In the design of ProtocolFormat, Standard Library Function Information 
Database has defi ned the prototype of each function, thus the call-type of a function call can be 
derived from the information in the last database query.

c) For diff erent call-types of functions, they are processed in diff erent ways in the shadow call 
stack manager. Firstly, if the call-type is “R” (network receiving call), the receive buff er will be 
taint-marked. Secondly, if the call-type is “M” (memory copy call), the destination buff er will 
be taint-marked. Thirdly, if the call-type is “D” (decryption call), the decryption buff er will be 
taint-marked.

d) Finally, we will record the corresponding information of the current function call on the run-
time shadow call stack. The information contains call address, called function name, address 
of call instruction, and call arguments. After executing the return instruction, the information 
of the returned call will be removed from the run-time shadow call stack.

Retaint-mark tainted data. For other types of instructions that ProtocolFormat handles, we need to 
check whether the source operand is a tainted data, and if true, this data will be taint-marked 
again. More especially, take a data movement instruction as example, if the instruction takes a 
tainted data as source operand, then a new item that is about the data movement operation will be 
appended to the dependency chain.

3.2.2 Taint Manager

This module primarily implements two main functions: providing other modules with taint-
related operations, and the management and maintenance of the tainted buff er information table 
(TBIT).
Before further discussion about how to implement the taint-related operations, we fi rstly introduce 
the data structure that this module processes and maintains. In the proposed system, there are 
three data structures relative to tainted data, they are TBIT node data structure, tainted buff er 
descriptor data structure, and tainted tab data structure. Meanwhile, all these data structures are 
stored and kept in the tainted buff er information table (TBIT) until ProtocolFormat extracts the 
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message format. The relationship between the TBIT and the three tainted data structures as shown 
in Figure 4.
TBIT Node. This structure stores the starting address of tainted buff er, tainted buff er descriptor 
and tainted tab table. It is primarily used in quick searching for a tainted buff er.
Tainted Buff er Descriptor. This structure stores information about the tainted buff er, which 
includes the type of this tainted buff er (created by which call-type of library function), the identifi er 
and size of this tainted buff er. 
Tainted Tab. There is a one-to-one relationship between the one-byte-long memory unit in crypto-
graphic protocol application and the tainted tab. In a tainted tab, it not only contains the information 
about the address and the content of this associated memory location, but also stores dependency 
chain – an important data structure in the proposed system. A dependency chain for a network 
application is the sequence of reading operations operating on a certain tainted data. A read 
operation comprises the name of the called function which the read operation instruction belongs 
to, the address of the function call instruction, the read operation instruction, the source location, 
the destination location that is writt en, and the off set of the tainted data with respect to the 
beginning of the tainted buff er. In our design, the dependency chain of a certain tainted data will 
grow up after the application executes read operations on it, and ProtocolFormat only handles the 
instructions that simply move the tainted data around but without modifying it. At last, the 
dependency chain are stopped building when the fi rst read operation for the destination location 
is: (1) a memory location; (2) an unknown location.
In addition, the taint marking and managing module provides others with three kinds of taint-
related operations: the taint-mark buff er operation, the taint-mark data operation and the TBIT 
querying operation.
Taint-mark buff er operation. When the instruction execution monitor traces that the cryptographic 
protocol application is executing certain function call instructions related to memory operation, 
such as recvfrom(), memcpy(), EVP_DecryptUpdate_ex(), it will perform the taint-mark buff er 
operation on the result buff er of these function calls. The processing of this operation can be 
divided into three steps: Firstly, we create a TBIT node that associates with the result buff er 
according to the arguments and the result of the called function. Secondly, we perform the taint-
mark data operation on every byte in this taint buff er. Finally, after the TBIT node is created 
successfully, we will insert it into the TBIT. Moreover, the Tainted Buff er Type in the tainted buff er 

Figure 4: Taint data structure and their relationship
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descriptor indicates which call-type of library function creates this tainted buff er. In the paper, we 
use “R” to represent the taint buff er created by network receiving library function, “M” represent 
that it is created by memory operation library function, and “D” represent that it is created by 
decryption operation library function.
Taint-mark data operation. Firstly, if the taint data doesn’t have an associated tainted tab, the 
module will create a tainted tab associated with this taint data, and then add the tainted tab to the 
Tainted Tab Table of TBIT node. Because the size of a tainted buff er is fi xed, the Tainted Tab Table 
in the TBIT node can be constructed by an array of tainted tab data structure. After that, this 
module will record the run-time execution context on the tainted tab at that moment, which 
includes the location address, the content and dependency chain of the tainted data. Secondly, if a 
tainted tab associated with the taint data has already existed, a new dependency chain node will 
be created, and then be appended to the dependency chain. In ProtocolFormat, a dependency chain 
node includes the information of called function name, address of call instruction, instruction, 
source operand, destination operand and the off set of this tainted data with respect to the begin-
ning of the tainted buff er.
TBIT querying operation. Given the address of a tainted data, this operation provides other 
modules with the ability to obtain the tainted data information in TBIT. The querying steps can be 
summarised as follows: fi rstly, it is needed to traverse through the linked list node of TBIT to 
search for which buff er’s address range the tainted data belongs to; if the right TBIT node is 
identifi ed, then the tainted tab table can be queried by computing the off set to the starting address 
of this buff er. Finally, after reading the tainted tab data structure, other modules can acquire the 
taint information that associate with this tainted data.

3.2.3 Phase Profi ler

According to the assumptions, the process of message parsing in the cryptographic protocol appli-
cation can be divided into “packet receiving” phase, “message fi eld extraction and processing” phase, 
“encrypted fi eld decryption and processing” phase, and “end-of-message parsing” phase. The reverse 
analysis system can derive accurate message format only when we know which phase the message 
parsing phase is in, therefore, it is very important whether the phase profi ler can accurately locate 
the transition point between diff erent message parsing phases.
The proposed approach is based on the observation that network application calls the corresponding 
library function in diff erent message parsing phase, and the specifi c process is as follows:
a) When the execution of a network receiving library function call instruction (such as recefrom()) 

is observed, then the message parsing phase will be marked as “packet receiving”, and the 
address of the function call instruction will be marked as the transition point to the “packet 
receiving” phase. Meanwhile, we can use the same approach to mark the “message fi eld extraction 
and processing” phase and the “encrypted fi eld decryption and process” phase;

b) As previously mentioned, it is not easy to locate the “end of message parsing” phase transition 
point, but we have overcome the problem by adopting the following methods: Firstly, for 
single thread application, this goal can be accomplished just by tracing whether another call 
instruction to the network receive library function is executed. Secondly, for multithread 
network application, the receiving of network packets and the processing of message are 
usually implemented in diff erent threads. For this reason, the call of the next network receiving 
library function doesn’t mean the application has fi nished the message parsing. Therefore, the 



155Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014 

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

fi rst method does not work in this case. Our solution is to observe whether the dependency 
chain in all tainted tabs have been stopped building, and we assume that the application has 
fi nished the message parsing if they are done. As mentioned before, the condition that Protocol-
Format stop building the dependency chain is whether the destination location in read operation 
is a memory location or an unknown location. Usually, it is enough to judge whether the appli-
cation has fi nished the processing of a message, because the application commonly will not 
perform further operation on tainted data after that point.

Most important of all, it is very critical to accurately locate the transition point to the “end of 
message parsing” phase. Because only when the cryptographic protocol application just fi nishes the 
message parsing, the tainted information recorded on TBIT is suffi  cient to present the whole 
message parsing process; and just at this moment, we can use them to construct the “message 
parsing process tree”.

3.2.4 Message Format Constructor

When ProtocoFormat identifi es that the cryptographic protocol application has fi nished message 
parsing process, then the message format constructor will be launched to analyze and process the 
tainted information that stores in TBIT. In our design, the extraction of message format is divided 
into three steps: fi rstly, we need to create a “message parsing process tree”; after that, the tree will be 
traversed to identify message fi elds in every tainted buff er; Finally, message format constructor 
infers the semantics of each fi eld, and fi nishes the message format extraction.

3.2.4.1 Creating Message Parsing Process Tree
Message parsing process tree accurately reveals how a cryptographic protocol application parses 
an incoming message. The input data used for creating the message parsing process tree derives 
from the TBIT. The details of construction of the message parsing process tree are described in 
Algorithm 1.
Building message parsing process tree and using it to store the identifi ed fi elds are the main tasks 
of ProtocolFormat, each node of this tree represents a fi eld in the message. Essentially, Algorithm 1 
needs to iterate through the TBIT and searches for a TBIT node whose “Taint Buff er Type” is “R” 
(line 5, this tainted buff er is created by a network receiving library function such as recefrom()). 
Once found, the ROOT node of the “message parsing process tree” will be created and initiated 
according to the information that stores in the TBIT node. As shown in Figure 5, the data structure 
of tree node is similar to the tainted tab table in TBIT node, the number of items in a tree node 
equals the size of the relevant tainted buff er.
After creating the ROOT node, we will read the tainted tab of each item in it (lines 11-12). If the 
call-type of the last function call in the dependency chain of this taint tab is “M” (created by 
memory operation library function), then a new plaintext message fi eld tree node will be created 
according to the starting address and the size of the destination buff er created by this last memory 
operation (lines 13-14). This information can be obtained by the call arguments stored in the 
dependency chain. Similarly, if the call-type of the last function call in the dependency chain is 
“D” (decryption library function call), a decryption fi eld tree node will be created and inserted as 
a child node to the ROOT node. However, if the call-type of the last function call is “O” (other 
function call), we do nothing but set the child node of this tree node as NULL (lines 20-23, assign 
“Linked Tree Node” of this item to NULL).
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Algorithm 1: Message Processing Tree Creation

Figure 5: Message Field Tree Node Structure

Figure 6: Message Parsing Process Tree for a SSL Handshake Message
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The procedure that starts from line 10 to line 25 will be executed recursively until the child nodes 
of all new created tree nodes are NULL. At that moment, we stop building the message parsing 
process tree. For illustrating the parsing process more specifi cally, as shown in Figure 6, we present 
a message parsing process tree derived from a SSL handshake protocol message, which propagates 
from client browser to htt ps server during the fourth negotiation phrase.

3.2.4.2 Identifying Message Fields
After construction of message parsing process tree, we need to identify the message fi elds that 
exist in every message tree node (in fact, it represents a tainted buff er), the detailed process is 
described in Algorithm 2. 

Algorithm 2: Message Field Identifi cation

Figure 7: The Dividing Result of “R1” After First Step

Specifi cally, Algorithm 2 adopts the depth-fi rst search strategy to traverse each node of the 
message-processing tree. The fi rst step is to obtain the root tree node “R1”. After that, we compare 
the dependency chain of each item in the root node, and divide ones that have the similar 
dependency chain into a message fi eld. Take an example as shown in Figure 7; the fi rst step (lines 
3-8) will divide the root node “R1” into two message fi elds “M11”and “M12”.
The next step is to infer the fi eld att ributes of each message fi eld starting from the lowest address 
of this tree node (lines 9-11) and iterate these steps until all message fi elds have been identifi ed 
(lines 13-14). Currently, our prototype system just handles two types of fi eld att ributes: plaintext 
fi eld and encrypted fi eld. After the algorithm terminates, we derive a hierarchical message format 
of this example, as shown in Figure 8. On the other hand, the reverse result can also be presented 
as:

R1:     M11, {M2, M3, M4}K
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3.2.4.3 Message Fields Semantics Inference
After identifying message fi elds for the message parsing process tree, we can use it to represent 
the hierarchical structure of the message; however, it does not contain semantic information for 
each message fi eld, such as whether it represents the length of another message fi eld, whether it is 
a RSA encrypted fi eld or a hash fi eld. However, in our future work, whether we can successfully 
reverse extract the formal protocol specifi cation from a security application depends on the seman-
tics of every message fi eld. For this reason, in this section we fi rstly introduce the approach to 
identify the fi eld semantics in messages.

Figure 8: The Message Format of Example Message

Similar to previous work (Caballero et al, 2007; Gilbert et al, 2008; Juan et al, 2009), our approach is 
based on the insight that many library functions and instructions used in applications contain rich 
semantic information. As a result, the semantics of message fi elds can be inferred by observing 
whether the tainted data is taken as input parameters of the library function calls and the instruc-
tions whose semantics are known. Then the tainted data will be associated with the semantics of 
the corresponding parameters, which have been defi ned in the function prototypes.
As mentioned in instruction execution monitor, the call-type of function can be obtained by 
querying the standard library function information database. In fact, the semantic information of 

 Function Name Field Semantics Input Buff er Output Buff er Call-type 

 EVP_DigestUpdate Message Digest Input Field Second Parameter NULL D 

 EVP_DigestFinal_ex Message Digest Field NULL Second Parameter D 

  Input Buff er is Message 
 EVP_DecryptUpdate Encryption Field Fourth Parameter Second Parameter D
  Output Buff er is Message
  Decryption Field  

 EVP_DecryptFinal_ex Message Decryption Field NULL Second Parameter D 

 memcpy Output Buff er is Memory  Second Parameter First Parameter M
  Write Field  

 recvfrom Network Received Field NULL Second Parameter R 

Table 3: API Function Prototype Handled by ProtocolFormat
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well-known standard library functions is stored in the Standard Library Function Information 
Database, therefore, message fi eld semantics can be derived by querying this database. Although 
the documents of these functions or instructions commonly are public, such as the Microsoft 
Developer Network (MSDN) or the standard C library, which describe the semantics of the parameter 
and the goal of these library functions, we need to manually convert them into the formal function 
prototype that PotocolFormat can handle. Table 3 shows parts of the library function prototypes 
stored in the Standard Library Function Information Database, the semantics of their input buff er and 
output buff er have been defi ned in the prototype.

4. Implementation and Evaluation

4.1 Implementation

Based on the latest Valgrind (version 3.6.1), we have implemented a prototype system of Protocol-
Format as a tool of the Valgrind platform. For the instruction execution monitor in the proposed 
system, we use Callgrind that is a profi ling tool under the Valgrind platform as the main framework 
of this module. Meanwhile, a great many of binary analysis techniques supported by Valgrind 
platform can be utilized during the implementation of this module, these techniques include 
instruction translation, memory marking, taint propagation, and others. Because of limited time, we do 
not adopt mature database techniques, such as MYSQL or Oracle, to build the Standard Library 
Function Information Database in the execution monitor, but merely store the standard library 
function prototype in a text fi le. Consequently, once ProtocolFormat starts it will read this text fi le 
fi rst, and then store the information in an object based on array structure.

4.2 Evaluation

In order to evaluate the actual eff ect of ProtocolFormat researched in this paper, we will perform 
two sets of experiments on ProtocolFormat. The fi rst set of experiments involves seven protocol 
messages from four known cryptographic protocol applications. The second set of experiments 
involves one protocol message in an unknown cryptographic protocol used by a video communi-
cation application.
The experiment is as the following steps: Firstly, a cryptographic protocol application that can 
parse a cryptographic protocol message is launched in ProtocolFormat simulation environment. 
Then, after the application fi nishes parsing an incoming message, our system will output a result 
table about the format of this message. Therefore, we can evaluate ProtocolFormat by comparing 
the result with the protocol specifi cation adopted by this application.

4.2.1 Evaluation on Known Protocols

In this section, the proposed system is evaluated on two well-known cryptographic protocols: SSL 
Handshake Protocol and FTP SSL. After ProtocolFormat outputs all the message formats, they will 
be compared with the output results of Wireshark 1.6.0. For each cryptographic protocol, we will 
choose a typical application that implements this protocol.
For conveniently comparing with the Wireshark, we defi ne two terminologies that relate to the 
evaluation indicators of the experiments: leaf fi eld and hierarchical fi eld. A leaf fi eld means that this 
message fi eld cannot be further divided into any subfi elds. Hierarchical fi eld indicates that this 
message fi eld consists of several subfi elds. We respectively represent the sets of leaf fi elds and 
hierarchical fi elds as L and H, and count |LW|, |HW| and |LP|, |HP| in the results of Wireshark and 
ProtocolFormat. Then, after comparing with standard protocol specifi cation, we use |E(LP)| and 
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|E(HP)| respectively represent the number of errors on the leaf fi elds and the hierarchical fi elds of 
message format result produced by ProtocolFormat. In addition, since ProtocolFormat may overly 
divide a correct fi eld into several sub-fi elds, we count the total number of these overly divided 
fi elds as |OP|. 
In this experiment, for each protocol we select a typical application that adopts the protocol as part 
of their communication. For SSL Handshake protocol, we evaluate ProtocolFormat with a HTTPS 
server and a client browser, and compare the reverse derived message format with wireshark. More 
specifi cally, we chose Apache as the HTTPS sever, run it under the environment of ProtocolFormat, 
observe the execution of it, and then run Firefox, a browser client, from another physical machine 
to establish a SSL connection. The reverse analysis continues until the SSL handshake phrase ends.

For FTP SSL, we select vsftpd 2.3.4 for FTP SSL server and Filezilla 3.5 for FTP client. Similar to the 
experiment of SSL handshake protocol, FTP SSL server and FTP client respectively run at diff erent 
physical machines under ProtocolFormat. We fi rstly control the FTP client to send a AUTH SSL 
request command message to the FTP SSL server, then after the SSL connection is established, we 
download a fi le from the sever and close the session. The results are shown in Table 4.
Result analysis. The results of SSL handshake protocol and FTP SSL show that ProtocolFormat can 
reversely extract message format satisfactorily, and can even outperform Wireshark when security 
applications use lots of library function to operate on received data, such as identifying leaf fi elds 
in messages of “Client Hello”, “Client Key Exchange” and “Change Cipher Spec”. However, the results 
also show that when network applications do not use standard library functions to parse messages, 
ProtocolFormat will not output accurate message format results. In such case, Wireshark will perform 
bett er than ProtocolFormat, as shown in the result of “Server Hello” in Table 4. 

4.2.2 Evaluation on Unknown Cryptographic Protocol

In this experiment, we evaluate the proposed system on an application that adopts an unknown 
cryptographic protocol to hide its communication. We choose a video communication application 
as the experimental application that needs to authenticate each communication entity. The mini-
mum system is composed of a server and two user side applications. We only run a client side 
program of this communication application in ProtocolFormat environment, and separately run 
another client side and server program on two diff erent virtual machines. 

   Wireshark ProtocolFormat 
 Protocol Message Type |LW| |HW| |LP| |HP| |E(LP)| |E(Hp)| |Op| 
  Client Hello 31 7 41 9 1 0 0 
 SSL Handshake Server Hello 98 76 29 9 0 0 0 
 Protocol Client Key Exchange 13 4 17 6 0 0 0 
  Change Cipher Spec 8 2 11 5 1 0 1 
  Welcome 2 1 3 1 1 0 0 
 FTP SSL Auth SSL Request 2 1 2 0 0 1 0 
  Server Response  2 1 2 0 0 1 0

Table 4: Message Format Comparison between Wireshark and ProtocolFormat
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During the experiment, we fi rstly capture a packet from the server to the user, and parse it by 
Wireshark, the packet parsing results are shown in Figure 9. According to Figure 9, the Wireshark 
cannot decode the application data upon transport layer. We think there are mainly two reasons 
for this: on the one hand, maybe the authentication module of this cryptographic protocol appli-
cation program is developed based on a cryptographic protocol specifi cation, however, crypto-
graphic protocol specifi cation commonly does not strictly fi x encryption algorithm, length of each 
message fi eld, and others. As a result, diff erent implementations of a same cryptographic protocol 
usually have diff erent message formats. Consequently, for the protocol analysis techniques based 
on network fl ow, such as OmniPeek and Wireshark, they cannot parse this kind of encrypted 
messages for lack of knowledge about how to decrypt it. 
After the user side program accomplishes a message parsing process, ProtocolFormat outputs the 
message format result as shown in Figure 10.

Figure 9: Wireshark Resolving Result

Figure 10: The Message-processing Tree for an Unknown Protocol

In Figure 10, root node shows that this message (application layer data in network packet) consists 
of three message fi elds, they are length fi eld “M1”, encrypted fi eld “0400F1F8” and encrypted fi eld 
“0400F1B8”. The decrypted fi eld of the encrypted fi eld “0400F1F8” is “0400EDB0”, and “0400EDB0” 
can be further divided into hostname fi eld “0400F34C”, key fi eld “0400F360”, and two general 
fi elds “0400F380”, “0400F384”. Similarly, the decrypted fi eld of the encrypted fi eld “0400F1B8” is 
“0400FCB0”, and “0400FCB0” can be further divided into hostname fi eld “0400F3A8” and key 
fi eld “0400F360”.
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According to the hierarchical structure of the message format, we can further describe the message 
format as: 

M1, {0400F34C,0400F360,0400F380,0400F384}K, {0400F3A8,0400F360}K
Moreover, we fi nd there is an intersecting tree node “0400F360”, of which the background colour 
is black in Figure 10, between the two decrypted fi elds. Usually, it means that the two decrypted 
fi elds have a common fi eld.

5. Related Work

In this section, we present the related work and compare it with ProtocolFormat. Note that the 
instruction execution monitor relies heavily on the dynamic taint analysis technique. Moreover, 
since this technique has been widely investigated in recent years, there exist abundant related 
works for taint analysis (Chow et al, 2004; Crandall et al, 2006; Manuel et al, 2007; Newsome and 
Song, 2005; Suh et al, 2004; Philipp et al, 2007; Heng et al, 2007). Therefore, the detailed description 
is omitt ed in this section.
As mentioned before, protocol reverse engineering has recently received signifi cant att ention for 
its importance to analyzing network security applications. The Protocol Informatics (PI) project 
and Discoverer are network-based reverse approaches; therefore, they extract the message format 
from collected network traces. For just only requiring collection of network fl ow, these kinds of 
approaches have advantages when a protocol parsing application is not available, However, they 
become less eff ective in face of the encrypted network fl ow.
Unlike the PI and Discoverer projects, several reverse systems such as Polyglot (Caballero et al, 
2007), AutoFormat (Zhiqiang et al, 2008), Tupni (Cui et al, 2008), Prospex (Comparett i et al, 2009), 
Dispather (Caballero et al, 2009; Juan et al, 2009), and ReFormat (Zhi et al, 2009) which from host 
perspective, share the key insight that how a protocol application recognizes and parses protocol 
messages provides valuable information about message format. Based on the insight, Autoformat 
collects and analyzes run-time execution context information to infer message format by recog-
nizing and leveraging fi eld specifi c execution context. In addition, Prospex makes further progress 
to uncover protocol specifi cation. However, all these system are mainly designed to work with 
plain-text input message except ReFormat. Therefore, they all become ineff ective when analyzing 
encrypted protocol messages.
In the current existing protocol reverse engineering approaches, ReFormat can extract the message 
format when the message is encrypted. However, there are also many limitations, for example, 
when the processing of a message involves signifi cant arithmetic and bitwise operations, Reformat 
may not work properly. Furthermore, ReFormat assumes an application fi rst decrypts an encrypted 
message and then processes the decrypted message, thus, if an application decrypts part of the 
message and processes it before decrypting and processing the rest, ReFormat will stop working 
because it can’t identify the whole decrypted message correctly. That may be particularly trouble-
some because a cryptographic protocol message commonly contains several encrypted message 
fi elds and plain-text fi elds, so ReFormat cannot extract message format from this kind of message. 
Comparing to ReFormat, ProtocolFormat relies on another technique to locate the decrypted memory 
buff ers: identifi cation of calls to standard decrypted function. Similar to other program-based 
system, ProtocolFormat relies on dynamic taint analysis technique, this technique has been proposed 
in Newsome and Song (2005). 
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6. Limitations and Future Work

In this section, we discuss about the limitations of ProtocolFormat and suggest possible improve-
ments for future work.
ProtocolFormat relies heavily on the knowledge of relevant standard library function. For example, 
according to the semantics of the network receive library function recvfrom(), the memory copy 
library function memcpy(), and the decryption library function EVP_DecryptUpdate(), the message 
parsing process can be divided into a packet receiving phase, a message fi eld extraction and pars-
ing phase, a message fi eld decryption and parsing phase, and an end-of-message parsing phase. 
Accurate identifi cation of these message-processing phases strongly determines whether Protocol-
Format can reverse derive the message format correctly. To take another example, ProtocolFormat 
relies strongly upon the semantics of function arguments because ProtocolFormat can create the 
tainted buff er or the “message processing tree” correctly only when it obtains the accurate 
semantics and values of the function arguments. Consequently, for network applications that 
implement decryption or memory duplication using their own binary program, ProtocolFormat 
may not work properly. One possible way to solve these problems is to discover other characteristics 
used for identifying diff erent message parsing phases.
ProtocolFormat is mainly used for analysis of benign applications. Therefore, in the proposed 
design, how to reversely analyze programs that adopt code obfuscation techniques is not con-
sidered. In other words, if the network application intentionally introduces abundant redundant 
instructions, e.g., by embedding unnecessary memory-related library function call instructions 
that take the receive buff er as a source argument, then the analysis of ProtocolFormat can be 
potentially evaded. Making ProtocolFormat applicable to reverse analyze obfuscated applications 
is still a technical challenge now.
ProtocolFormat identifi es whether a network application is extracting a message fi eld mainly by 
observing calls to memory-related library functions. However, if the application uses “zero-copy 
technique”, it will not call the memory copy library function to extract message fi elds. Therefore, 
even though the application has extracted a message fi eld, the dependency chain of these tainted 
data may be unchanged. In this case, ProtocolFormat cannot divide the message fi eld according to 
the calling sequence of each tainted data.
As for the granularity of message reverse analysis, the current version of ProtocolFormat can 
analyze the message format only at byte granularity; how to analyze the protocol fi eld at the bit 
level is being considered. Subsequent proposed work includes re-implementing tainted marking 
and propagation at the bit level so that future versions of ProtocolFormat can analyze protocol 
fi elds of less than one byte.
ProtocolFormat can only reverse analyze each message independently and cannot correlate multiple 
messages in the same protocol session. However, the fi nal goal of this research is to reverse 
reconstruct the cryptographic protocol specifi cation from the implementation of the cryptographic 
protocol. Therefore, improving the proposed approach to reverse analyze the sequential logic 
from multiple messages in a single protocol session and to reconstruct the entire protocol state 
machine is part of the authors’ proposed future work.

7. Conclusion

In this paper, ProtocolFormat is proposed, which is a system used for reverse extracting the message 
format from a cryptographic protocol applications program. The design of ProtocolFormat is 
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mainly based on the assumption that the parsing of incoming messages in cryptographic protocol 
applications is entirely based on calls to standard library functions. This paper fi rst introduces the 
entire system workfl ow, the critical data structures, and the structure, principle, and functions of 
each module in detail, and then conducts an evaluation of ProtocolFormat by performing two sets 
of experimental tests. The experimental results show that ProtocolFormat can accurately analyze 
messages from cryptographic protocol applications which are developed using standard library 
functions. Of course, the proposed system also contains many defects and problems, and therefore 
many improvements will subsequently be required. These are: (1) fi nding more characteristics 
that can be used to identify various message parsing phases; (2) further refi ning the granularity of 
reverse analysis so that future versions of ProtocolFormat can analyze a bit-level protocol fi eld, 
thereby achieving the purpose of improved analytical accuracy; and (3) improving the proposed 
approach to analyze and correlate multiple messages in a single protocol session, making it 
possible to reconstruct a cryptographic protocol specifi cation from a cryptographic protocol 
application.
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