
145Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

 Copyright© 2014, Australian Computer Society Inc. General permission to republish, but not for profi t, all or part of this

material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its

date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

 Manuscript received: 14 August 2012

Communicating Editor: Seok-Hun Kim

Message Format Extraction of Cryptographic Protocol
Based on Dynamic Binary Analysis1

Meijian Li, Yongjun Wang, Peidai Xie and Zhen Huang

Computer College, National University of Defense Technology

ChangSha, China

Emails: (Li) 84647697@qq.com; (Wang) wwyyjj1971@126.com; (Xie) 348432959@qq.com;

(Huang) ZhenHuang.NUDT@gmail.com

Shangjie Jin

Military Transportation Institute of the General logistics Department

Tianjin, China

Email: jinshangjie@sohu.com

Shanshan Liu

Military Transportation University, Tianjin, China

Email: 870166743@qq.com

To maintain communications confi dentiality, cryptographic protocols are widely used in more and more
network applications. Moreover, some malwares even leverage these kinds of protocols to evade inspection by
IDS. Observation shows that protocol implementations commonly contain fl aws or vulnerabilities. Therefore,
research on reverse engineering of cryptographic protocols can play an important role in improving the
security of network applications, especially by providing another way to fi ght against malwares. Nevertheless,
previous protocol reverse engineering technologies, which are based on analysis of network traces, encounter
great challenges when the network messages transmitt ed between diff erent protocol principals are encrypted.
This paper proposes ProtocolFormat, which aims to infer the message format from dynamic execution of
cryptographic protocol applications. The proposed approach is based on the observation that the process of
message parsing in cryptographic protocol applications reveals rich information about the hierarchical
structures and semantics of their messages. Hence, by observing calls to library function and instruction
execution in network programs, the proposed system can reverse derive the formats of each protocol message
(even encrypted messages). Experiments show that the message formats output by ProtocolFormat not only
accurately identify message fi elds, but also unveil the structure of the encrypted message fi elds.
Keywords: Dynamic Binary Analysis, Protocol Reverse Engineering, Taint Analysis, Protocol Field,
Encryption
ACM Classifi cations: C.2.2 (Network Protocols – Protocol Verifi cation), K.4.4 (Electronic Commerce –
Security)

1 Part of this research has been supported by National 863 High Tech Programs under Grants No.
2009AA01Z432 and the National Natural Science Foundation of China under Grants No. 60873215.

146 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

1. Introduction

With network security technologies playing a more and more important role in people’s economic
activity, cryptographic protocols, as the main techniques that support network security tech-
nologies, are increasingly used in many kinds of security applications. On the other hand, to evade
inspection by IDS, some malwares leverage cryptographic protocols to hide their communications.
However, due to the complexity and diffi culty of its design and implementation, the protocol itself
or its implementation programs inevitably contain various fl aws and vulnerabilities. For example,
Shaikh and Bush have applied process algebra CSP (Communicating Sequential Processes) and
Schneider’s rank function theorem to the Woo-Lam protocol (Woo and Lam, 1992) to expose fl aws
in its design (Shaikh and Bush, 2005).
For security applications, identifying such fl aws is crucial to improving their security; meanwhile,
for malwares, discovering the vulnerabilities used in their protocols off ers a new way to fi ght
against them. For this reason, a methodological framework, which is based on dynamic binary
analysis technology to reverse derive the protocol specifi cation and discover the vulnerabilities of
network applications. Nevertheless, it is necessary to solve a crucial problem before achieving this
goal: how to derive the encrypted message format from dynamic execution of the cryptographic
protocol application.
In this paper, the approach taken is mainly based on the technologies of protocol reverse engineer-
ing. Commonly, protocol reverse engineering is a manual, time-consuming, tedious, and error-
prone process. To improve this situation, some researchers have recently presented certain kinds
of automatic reverse engineering approaches, which can be categorized into two classes: network-
based and program-based. For the network-based approach, representative research includes the
Protocol Informatics Project (Marshall, 2004) and Discover (Weidong et al, 2007). This kind of
approach commonly locates fi eld boundaries from a large number of network traces by leveraging
the sequence alignment algorithm, which has been used in bioinformatics for patt ern discovery.
The great advantage of this approach is its simplicity and ease of implementation. However, the
disadvantage is also obvious; it inevitably cannot obtain semantic information only from the
network traces. Moreover, according to the cryptographic protocol specifi cation, the messages
may have been encrypted during their transmission through the network. Therefore, unless a
decryption of the encrypted messages is available, it is not possible to use this kind of approach to
reverse extract a message format from any cryptographic protocol packet. For the program-based
approach, representative studies include Polyglot (Caballero et al, 2007), AutoFormat (Zhiqiang et al,
2008), Tupni (Cui et al, 2008), Prospex (Comparett i et al, 2009), ReFormat (Zhi et al, 2009), Dispather
(Caballero et al, 2009: Juan et al, 2009), and others. In contrast to the network-based approach, the
program-based approach extracts the protocol format based on how a network program parses
and processes a protocol message, which reveals plenty of information about the message format.
Therefore, the program-based approach can be more accurate and has more obvious advantages
than the network-based approach.
In this paper, ProtocolFormat is proposed, which is a system that aims to extract accurately the
message format for encrypted messages sent by a security application. However, unlike Dispather,
ProtocolFormat simply extracts the message format from received messages, and it is possible to
extract the message format of sent messages from the other side of the protocol session. This paper
also presents a novel technique to infer the fi eld semantics of encrypted messages received by a
security application. The proposed approach is based on the observation that standard library
functions, which are used in security applications, reveal rich semantic information about the

147Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

message format. On the other hand, ProtocolFormat is mainly based on dynamic taint analysis
technique (Newsome and Song, 2005), which taints the network input and observes how the
tainted data propagate during the execution of a network program. The authors have implemented
a prototype of the techniques based on the latest release of Valgrind (version 3.6.1) (Nethercote and
Seward, 2007; Nethercote, 2004). ProtocolFormat is used to analyze the SSL handshake protocol,
FTP SSL, and an unknown protocol used by a security communication application. The experi-
mental results are exciting; ProtocolFormat is able to extract the hierarchical message format of the
encrypted messages with high accuracy.
The rest of this paper is organized as follows. Section 2 defi nes the assumption and describes the
problem scope of this paper. Detailed system design and key techniques for extraction of encrypted
message format will be presented in Section 3. Section 4 describes implementation and evaluation
results. After discussing related work in Section 5, the limitations of ProtocolFormat will be analyzed
and possible improvements suggested in Section 6. Finally, Section 7 concludes the paper.

2. Assumption and Problem Scope

2.1 Assumption

In order to achieve security transmission, the implementations of all kinds of cryptographic proto-
cols commonly encrypt their communication. Thus, it is diffi cult to obtain any semantic information
from network fl ows, which makes it impossible to analyze this type of network application by
simply using the network-based approaches. The solution proposed by this paper is to observe
how network application parses network messages. Moreover, for the sake of making our solution
feasible, we introduce two assumptions as follows:
a) Standard Library Function. We assume that cryptographic protocol applications deal with

messages adopting standard library function. For instance, network socket library function
“recvfrom”, “recv”, and others, are called by these applications when receiving messages. At the
same time, messages are decrypted by calling standard decryption library functions, such as
“EVP_Decryptlnit_ex”, “EVP_DecryptUpdate”, “EVP_DecryptFinal_ex” from OpenSSL;

b) Message Parsing Process. Many cryptographic protocol applications parse network messages
according to a fi xed patt ern. Therefore, for simplifying the reverse analysis, we assume that the
message parsing process can be divided into four phases: (1) receiving network package, then
extracting the message payload from this package and storing it in a memory buff er;
(2) extracting fi elds from the message and parsing them respectively; (3) if the message has
encrypted message fi elds, the network application needs to decrypt them fi rstly, then parses
the decrypted message fi elds normally; (4) end-of-message parsing.

2.2 Terminology

Generally, a message format is a predetermined or prescribed spatial arrangement of the parts of
a message. This paper uses tree structure to express the message format, which reveals the hier-
archical and nested structure of a network message. In the following, we give a formal defi nition
of message format.
Message Format (MF). Let mf be a message format, mf can be viewed as a union of message fi elds
set T and relationship set R, mf = (T,R). T contains n (n > 0) elements, T = {(f,s,c)|f ∈ F }. F is the set
of message fi eld types which describe the att ribute of the message fi eld. In the current version of
our system, F supports the fi eld types of Length, Text, Binary Data, Key, RSA Encrypt, DES Encrypt

148 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

and AES Encrypt. s is a nature number that denote the fi eld length, and c is the content of this
message fi eld. R is the set that describes the relationship between message fi elds within T, R = {(ti,
tj, r)|ti, tj ∈ T, r ∈ ϒ}. ϒ is the relationship types set, which includes Father-Son, Son-Father, Older-
Younger Brother, Younger-Older brother and Other relationship.

2.3 Problem Scope

The goal of protocol reverse engineering is to extract protocol format, which includes protocol
message structure and protocol model that can be represented as a protocol state machine or
protocol specifi cation. Reversely extracting protocol model commonly comprises two steps:
Firstly, given a set of network packets, this technique extracts the message format for each protocol
message; secondly, given a set of message formats, it infers the multiple message types that
comprise the protocol, and extracts the state machine that represents the running process of the
protocol and the protocol specifi cation that formally describes the protocol.
This paper only deals with the fi rst step of the protocol model extraction. The goal of the proposed
approach is to derive the message format of received messages (especially the encrypted message)
by observing the dynamic execution of message parsing process in network program. However,
there are two main challenges the authors have to face: the fi rst one is to infer message fi eld
seman tics that will be used in the future work to reverse infer protocol model. In this paper, we
focus on typical fi eld semantics, i.e. length, timestamps, encryption, hostnames. The second one is
accurately locating the phase transition points during the dynamic execution of network appli-
cation which is more diffi cult. According to the assumption, the message parsing process is
divided into four phases, however, cryptographic protocol messages commonly consist of several
plain-text fi elds and encrypted fi elds, and even worse, there may be other encrypted fi elds in an
encrypted fi eld. Take SSL Handshake Protocol (Eric, 2001; David and Bruce, 1996) as example,
which is responsible for “secure session establishment” between two network applications, the
server and the client interact with each other with several types of messages during the handshake
phase, and every message type consists of several (encrypted) message fi elds. Table 1 shows the
message types of SSL handshake protocol and the corresponding number of their message fi elds.

 Message Type Message Fields Encrypted Message Field
 ClientHello 9 0
 ServerHello, Certifi cation, ServerHelloDone 24 0
 ClientKeyExchange, ChangeCipherSpec, Finished 16 4
 ChangeCiperSpec, Finish 11 4

Table 1: SSL Handshake Protocol

Consequently, a new approach is required to locate the transition points that identify which
message parsing phase the cryptographic protocol application is in. The intuition behind our
approach is simple and eff ective: the standard library functions contain enough semantic infor-
mation to illustrate what the program is doing. According to the assumption, cryptographic
protocol application decrypts incoming messages by using standard decryption library, such as
DES_Decrypt() and AES_Decrypt() in OpenSSL cryptography library. These cryptography library
functions are so powerful that they are widely used in most security applications, even malwares,
such as Agobot. In order to support the calling of library functions from external program modules,

149Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

library fi le must export the function symbols and the corresponding entry address in the fi le. As a
result, the transition points can be located by searching the instruction address where the
cryptographic protocol application calls these library functions.

3. System Design

3.1 Approach Overview

Figure 1: ProtocolFormat Working Process

Depending on the aforementioned approach that locates the transition points between two
message parsing processes, the working process overview of the proposed system is shown in
Figure 1. The simulative execution of cryptographic protocol application is under ProtocolFormat,
therefore, the working process of ProtocolFormat shown in Figure 1 corresponds to each message
parsing process in cryptographic protocol application.
According to the characteristics of standard library functions called in diff erent message parsing
phases, the proposed system works as follows:
1. Network Packets Receiving. In this phase, cryptographic protocol application reads off mes-

sage data from network packets. There are a limited number of standard library functions
accomplishing the task, such as read, recv, recvfrom, recvmsg, which are capable of reading off
network fl ow from a socket. Thus, the call addresses where the application read off network
packet from the network is the source point to start the tainted analysis, and ProtocolFormat
fi rstly marks the buff er that stores the received message as a tainted buff er after the application
completing these function calls, and then tracks and traces the taint propagation during the
execution of the application. For the mark operation, we will introduce it in section 3.2.2.

2. Extraction and Parsing of Message Field. Generally, a cryptographic protocol message consists
of several message fi elds, such as length fi eld, encrypted fi eld, and others. Therefore, before the
cryptographic protocol application further parses message fi elds, we assume it must fi rstly
extract the corresponding message data from the receive buff er, and this process commonly is
accomplished by calling the standard memory operation function, such as memcpy. For this
reason, ProtocolFormat needs to observe all data movement instructions that take the receive
buff er bytes as input and the functions that the data movement instructions belong to.
Meanwhile, ProtocolFormat marks the destination buff er of memory operation as tainted buff er
and every byte in the tainted buff er as tainted data. After that, ProtocolFormat tracks a small
subset of x86 instructions that take the tainted data as source location, and records the relevant
information on a tainted tab (introduced in section 3.2.3) that associates with this tainted data.

150 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

In addition, these instructions simply move tainted data around, but without modifying it. For
some tainted data that there isn’t any decryption function call take as input parameter until the
cryptographic protocol application completes the message parsing, we mark them as plaintext,
and divide the ones that have the similar dependency chain into a plaintext fi eld (dependency
chain will be introduced in section 3.2.2). Nevertheless, for the other tainted data that decrypted
functions take as input parameter, we mark them as ciphertext, and divide the ones that
possess the same dependency chain into an encrypted message fi eld (comparing to plaintext
tainted data, the last called function in dependency chain is a decrypt library function call).

3. Decryption and Processing of Encyrpted Field. Due to messages sent among diff erent crypto-
graphic protocol applications being encrypted, it is necessary to identify the memory buff ers
that hold the decrypted data when the decryption operation fi nishes. In ProtocolFormat, we
observe whether the call instructions for decryption library functions are executed; if the
decryption functions take the tainted buff er as source argument, then the decryption buff er
will be marked as a tainted buff er, and the source buff er will be marked as an encrypted
message fi eld. In this paper, we focus on these decryption standard library functions that
belong to cryptograph library OpenSSL, such as EVP_DecryptInit_ex(), EVP_DecryptUpdate(),
EVP_DecryptFinal_ex(). After the application has decrypted the encrypted message fi eld, we
assume that it will further parse the decrypted message fi eld. Therefore, the following task of
ProtocolFormat is a recursive process. During each iteration, it marks the source buff er as an
encrypted message fi eld and marks the new decryption buff er as a tainted buff er. The iteration
continues until the application fi nishes the message parsing process.

4. End-of-Message Parsing. Unfortunately, for lacking of enough knowledge about the protocol
message format, it is diffi cult to identify the point when the cryptographic protocol application
is fi nishing the message parsing. In ProtocolFormat, two approaches are used to overcome this
diffi culty (introduced in section 3.2.3). After the end transition point of the message parsing
has been located, ProtocolFormat will construct a “message parsing process tree” according to
the tainted information that associate with the tainted data. In a way, “message parsing process
tree” describes in detail how the cryptographic protocol application process an incoming
message, thus it is enough to derive the message format from this tree, and the detail will be
introduce in section 3.2.4.

3.2 System Architecture

According to the diff erentiation of function defi nition, the proposed system consists of fi ve key
modules as shown in Figure 2:

Figure 2: ProtocolFormat System Architecture

Instruction Execution Monitor. By instrumenting the data movement instructions as well as call
instructions, this module can observe the dynamic execution of a cryptographic protocol appli-
cation. Moreover, by observing program execution, the module can intercept network-received
function call, memory-related function call and decryption function call, and taint-mark the result
buff er.

151Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

Taint Marking and Managing Module. This module provides other modules with taint-mark
operation. Meanwhile, it also takes the responsibility for managing tainted information associated
with the taint data.
Phase Profi ler. According to the information that is provided by instruction execution monitor, it
could infer which phase the cryptographic protocol application is in, and inform other modules to
do the corresponding operation.
Field Semantics Inference Engine. Based on the semantics of function and instruction that operate
on tainted data, this module infers the semantics of each byte and fi eld in messages.
Message Format Constructor. When the cryptographic protocol application fi nishes the processing
of an incoming message, this module fi rstly constructs “message parsing process tree”, then
creates message format from this tree.

3.2.1 Instruction Execution Monitor

Figure 3: Instruction Execution Monitor Architecture

 Instruction Instruction Description

 call Call Procedure
 mov Move to/from Registers/Memory
 movsx Move with Sign-Extension
 movzx Move with Zero-Extend
 push Push Word or Doubleword Onto the Stack
 stos Store String
 pop Pop a Value from the Stack
 xchg Exchange Register/Memory with Register
 bswap Byte Swap

Table 2: Instructions that ProtocolFormat handles

The architecture of instruction execution monitor as shown in Figure 3. Similar to previous
program-based approaches, ProtocolFormat also needs to monitor the execution of a cryptographic
protocol application. However, unlike the others, it is just interested in a small subset of x86 data
movement instructions. The list of the subset instructions is described in Table 2.
Shadow call stack manager. For the function call instructions, we obtain the run-time shadow call
stack by instrumenting this kind of instructions. Although we can traverse the current stack frames
to acquire the run-time call stack information, and if the debug information is embedded in the

152 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

binary, we can even obtain the relevant function names from the return address, noting that this
method works well only when the program or library is built with stack frame pointer support.
For overcoming this problem, we design shadow call stack manager to maintain a run-time
shadow call stack inside the execution monitor. The shadow call stack contains the call instruction
address, function name, call address, and call arguments for all the functions called so far. The
working process of the shadow call stack manager can be divided into four phases:
a) When cryptographic protocol application is executing a function call instruction, shadow call

stack manager extracts the call address, called function name, instruction address, and argu-
ments of this function call. For obtaining the called function name, if debug info is available,
Valgrind supports a convenient way to derive the function name from the call address. For
obtaining the values of call arguments, fi rstly, shadow call stack manger query the Standard
Library Function Information Database, if the called function is a standard library function, we
will obtain the defi nition and semantic information of the parameter from this database, and
then acquire the value of each parameter by traversing the stack frame. Otherwise, if the called
function is not a standard library function, we will get nothing after querying the database, so
just set the call arguments of this function call to NULL.

b) The next step is to obtain call-type of the called function. In the proposed system, we defi ne
four kinds of call-type: they are network receiving call “R”, memory copy call “M”, decryption
call “D”, and other call “O”. In the design of ProtocolFormat, Standard Library Function Information
Database has defi ned the prototype of each function, thus the call-type of a function call can be
derived from the information in the last database query.

c) For diff erent call-types of functions, they are processed in diff erent ways in the shadow call
stack manager. Firstly, if the call-type is “R” (network receiving call), the receive buff er will be
taint-marked. Secondly, if the call-type is “M” (memory copy call), the destination buff er will
be taint-marked. Thirdly, if the call-type is “D” (decryption call), the decryption buff er will be
taint-marked.

d) Finally, we will record the corresponding information of the current function call on the run-
time shadow call stack. The information contains call address, called function name, address
of call instruction, and call arguments. After executing the return instruction, the information
of the returned call will be removed from the run-time shadow call stack.

Retaint-mark tainted data. For other types of instructions that ProtocolFormat handles, we need to
check whether the source operand is a tainted data, and if true, this data will be taint-marked
again. More especially, take a data movement instruction as example, if the instruction takes a
tainted data as source operand, then a new item that is about the data movement operation will be
appended to the dependency chain.

3.2.2 Taint Manager

This module primarily implements two main functions: providing other modules with taint-
related operations, and the management and maintenance of the tainted buff er information table
(TBIT).
Before further discussion about how to implement the taint-related operations, we fi rstly introduce
the data structure that this module processes and maintains. In the proposed system, there are
three data structures relative to tainted data, they are TBIT node data structure, tainted buff er
descriptor data structure, and tainted tab data structure. Meanwhile, all these data structures are
stored and kept in the tainted buff er information table (TBIT) until ProtocolFormat extracts the

153Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

message format. The relationship between the TBIT and the three tainted data structures as shown
in Figure 4.
TBIT Node. This structure stores the starting address of tainted buff er, tainted buff er descriptor
and tainted tab table. It is primarily used in quick searching for a tainted buff er.
Tainted Buff er Descriptor. This structure stores information about the tainted buff er, which
includes the type of this tainted buff er (created by which call-type of library function), the identifi er
and size of this tainted buff er.
Tainted Tab. There is a one-to-one relationship between the one-byte-long memory unit in crypto-
graphic protocol application and the tainted tab. In a tainted tab, it not only contains the information
about the address and the content of this associated memory location, but also stores dependency
chain – an important data structure in the proposed system. A dependency chain for a network
application is the sequence of reading operations operating on a certain tainted data. A read
operation comprises the name of the called function which the read operation instruction belongs
to, the address of the function call instruction, the read operation instruction, the source location,
the destination location that is writt en, and the off set of the tainted data with respect to the
beginning of the tainted buff er. In our design, the dependency chain of a certain tainted data will
grow up after the application executes read operations on it, and ProtocolFormat only handles the
instructions that simply move the tainted data around but without modifying it. At last, the
dependency chain are stopped building when the fi rst read operation for the destination location
is: (1) a memory location; (2) an unknown location.
In addition, the taint marking and managing module provides others with three kinds of taint-
related operations: the taint-mark buff er operation, the taint-mark data operation and the TBIT
querying operation.
Taint-mark buff er operation. When the instruction execution monitor traces that the cryptographic
protocol application is executing certain function call instructions related to memory operation,
such as recvfrom(), memcpy(), EVP_DecryptUpdate_ex(), it will perform the taint-mark buff er
operation on the result buff er of these function calls. The processing of this operation can be
divided into three steps: Firstly, we create a TBIT node that associates with the result buff er
according to the arguments and the result of the called function. Secondly, we perform the taint-
mark data operation on every byte in this taint buff er. Finally, after the TBIT node is created
successfully, we will insert it into the TBIT. Moreover, the Tainted Buff er Type in the tainted buff er

Figure 4: Taint data structure and their relationship

154 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

descriptor indicates which call-type of library function creates this tainted buff er. In the paper, we
use “R” to represent the taint buff er created by network receiving library function, “M” represent
that it is created by memory operation library function, and “D” represent that it is created by
decryption operation library function.
Taint-mark data operation. Firstly, if the taint data doesn’t have an associated tainted tab, the
module will create a tainted tab associated with this taint data, and then add the tainted tab to the
Tainted Tab Table of TBIT node. Because the size of a tainted buff er is fi xed, the Tainted Tab Table
in the TBIT node can be constructed by an array of tainted tab data structure. After that, this
module will record the run-time execution context on the tainted tab at that moment, which
includes the location address, the content and dependency chain of the tainted data. Secondly, if a
tainted tab associated with the taint data has already existed, a new dependency chain node will
be created, and then be appended to the dependency chain. In ProtocolFormat, a dependency chain
node includes the information of called function name, address of call instruction, instruction,
source operand, destination operand and the off set of this tainted data with respect to the begin-
ning of the tainted buff er.
TBIT querying operation. Given the address of a tainted data, this operation provides other
modules with the ability to obtain the tainted data information in TBIT. The querying steps can be
summarised as follows: fi rstly, it is needed to traverse through the linked list node of TBIT to
search for which buff er’s address range the tainted data belongs to; if the right TBIT node is
identifi ed, then the tainted tab table can be queried by computing the off set to the starting address
of this buff er. Finally, after reading the tainted tab data structure, other modules can acquire the
taint information that associate with this tainted data.

3.2.3 Phase Profi ler

According to the assumptions, the process of message parsing in the cryptographic protocol appli-
cation can be divided into “packet receiving” phase, “message fi eld extraction and processing” phase,
“encrypted fi eld decryption and processing” phase, and “end-of-message parsing” phase. The reverse
analysis system can derive accurate message format only when we know which phase the message
parsing phase is in, therefore, it is very important whether the phase profi ler can accurately locate
the transition point between diff erent message parsing phases.
The proposed approach is based on the observation that network application calls the corresponding
library function in diff erent message parsing phase, and the specifi c process is as follows:
a) When the execution of a network receiving library function call instruction (such as recefrom())

is observed, then the message parsing phase will be marked as “packet receiving”, and the
address of the function call instruction will be marked as the transition point to the “packet
receiving” phase. Meanwhile, we can use the same approach to mark the “message fi eld extraction
and processing” phase and the “encrypted fi eld decryption and process” phase;

b) As previously mentioned, it is not easy to locate the “end of message parsing” phase transition
point, but we have overcome the problem by adopting the following methods: Firstly, for
single thread application, this goal can be accomplished just by tracing whether another call
instruction to the network receive library function is executed. Secondly, for multithread
network application, the receiving of network packets and the processing of message are
usually implemented in diff erent threads. For this reason, the call of the next network receiving
library function doesn’t mean the application has fi nished the message parsing. Therefore, the

155Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

fi rst method does not work in this case. Our solution is to observe whether the dependency
chain in all tainted tabs have been stopped building, and we assume that the application has
fi nished the message parsing if they are done. As mentioned before, the condition that Protocol-
Format stop building the dependency chain is whether the destination location in read operation
is a memory location or an unknown location. Usually, it is enough to judge whether the appli-
cation has fi nished the processing of a message, because the application commonly will not
perform further operation on tainted data after that point.

Most important of all, it is very critical to accurately locate the transition point to the “end of
message parsing” phase. Because only when the cryptographic protocol application just fi nishes the
message parsing, the tainted information recorded on TBIT is suffi cient to present the whole
message parsing process; and just at this moment, we can use them to construct the “message
parsing process tree”.

3.2.4 Message Format Constructor

When ProtocoFormat identifi es that the cryptographic protocol application has fi nished message
parsing process, then the message format constructor will be launched to analyze and process the
tainted information that stores in TBIT. In our design, the extraction of message format is divided
into three steps: fi rstly, we need to create a “message parsing process tree”; after that, the tree will be
traversed to identify message fi elds in every tainted buff er; Finally, message format constructor
infers the semantics of each fi eld, and fi nishes the message format extraction.

3.2.4.1 Creating Message Parsing Process Tree
Message parsing process tree accurately reveals how a cryptographic protocol application parses
an incoming message. The input data used for creating the message parsing process tree derives
from the TBIT. The details of construction of the message parsing process tree are described in
Algorithm 1.
Building message parsing process tree and using it to store the identifi ed fi elds are the main tasks
of ProtocolFormat, each node of this tree represents a fi eld in the message. Essentially, Algorithm 1
needs to iterate through the TBIT and searches for a TBIT node whose “Taint Buff er Type” is “R”
(line 5, this tainted buff er is created by a network receiving library function such as recefrom()).
Once found, the ROOT node of the “message parsing process tree” will be created and initiated
according to the information that stores in the TBIT node. As shown in Figure 5, the data structure
of tree node is similar to the tainted tab table in TBIT node, the number of items in a tree node
equals the size of the relevant tainted buff er.
After creating the ROOT node, we will read the tainted tab of each item in it (lines 11-12). If the
call-type of the last function call in the dependency chain of this taint tab is “M” (created by
memory operation library function), then a new plaintext message fi eld tree node will be created
according to the starting address and the size of the destination buff er created by this last memory
operation (lines 13-14). This information can be obtained by the call arguments stored in the
dependency chain. Similarly, if the call-type of the last function call in the dependency chain is
“D” (decryption library function call), a decryption fi eld tree node will be created and inserted as
a child node to the ROOT node. However, if the call-type of the last function call is “O” (other
function call), we do nothing but set the child node of this tree node as NULL (lines 20-23, assign
“Linked Tree Node” of this item to NULL).

156 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

Algorithm 1: Message Processing Tree Creation

Figure 5: Message Field Tree Node Structure

Figure 6: Message Parsing Process Tree for a SSL Handshake Message

157Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

The procedure that starts from line 10 to line 25 will be executed recursively until the child nodes
of all new created tree nodes are NULL. At that moment, we stop building the message parsing
process tree. For illustrating the parsing process more specifi cally, as shown in Figure 6, we present
a message parsing process tree derived from a SSL handshake protocol message, which propagates
from client browser to htt ps server during the fourth negotiation phrase.

3.2.4.2 Identifying Message Fields
After construction of message parsing process tree, we need to identify the message fi elds that
exist in every message tree node (in fact, it represents a tainted buff er), the detailed process is
described in Algorithm 2.

Algorithm 2: Message Field Identifi cation

Figure 7: The Dividing Result of “R1” After First Step

Specifi cally, Algorithm 2 adopts the depth-fi rst search strategy to traverse each node of the
message-processing tree. The fi rst step is to obtain the root tree node “R1”. After that, we compare
the dependency chain of each item in the root node, and divide ones that have the similar
dependency chain into a message fi eld. Take an example as shown in Figure 7; the fi rst step (lines
3-8) will divide the root node “R1” into two message fi elds “M11”and “M12”.
The next step is to infer the fi eld att ributes of each message fi eld starting from the lowest address
of this tree node (lines 9-11) and iterate these steps until all message fi elds have been identifi ed
(lines 13-14). Currently, our prototype system just handles two types of fi eld att ributes: plaintext
fi eld and encrypted fi eld. After the algorithm terminates, we derive a hierarchical message format
of this example, as shown in Figure 8. On the other hand, the reverse result can also be presented
as:

R1: M11, {M2, M3, M4}K

158 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

3.2.4.3 Message Fields Semantics Inference
After identifying message fi elds for the message parsing process tree, we can use it to represent
the hierarchical structure of the message; however, it does not contain semantic information for
each message fi eld, such as whether it represents the length of another message fi eld, whether it is
a RSA encrypted fi eld or a hash fi eld. However, in our future work, whether we can successfully
reverse extract the formal protocol specifi cation from a security application depends on the seman-
tics of every message fi eld. For this reason, in this section we fi rstly introduce the approach to
identify the fi eld semantics in messages.

Figure 8: The Message Format of Example Message

Similar to previous work (Caballero et al, 2007; Gilbert et al, 2008; Juan et al, 2009), our approach is
based on the insight that many library functions and instructions used in applications contain rich
semantic information. As a result, the semantics of message fi elds can be inferred by observing
whether the tainted data is taken as input parameters of the library function calls and the instruc-
tions whose semantics are known. Then the tainted data will be associated with the semantics of
the corresponding parameters, which have been defi ned in the function prototypes.
As mentioned in instruction execution monitor, the call-type of function can be obtained by
querying the standard library function information database. In fact, the semantic information of

 Function Name Field Semantics Input Buff er Output Buff er Call-type

 EVP_DigestUpdate Message Digest Input Field Second Parameter NULL D

 EVP_DigestFinal_ex Message Digest Field NULL Second Parameter D

 Input Buff er is Message
 EVP_DecryptUpdate Encryption Field Fourth Parameter Second Parameter D
 Output Buff er is Message
 Decryption Field

 EVP_DecryptFinal_ex Message Decryption Field NULL Second Parameter D

 memcpy Output Buff er is Memory Second Parameter First Parameter M
 Write Field

 recvfrom Network Received Field NULL Second Parameter R

Table 3: API Function Prototype Handled by ProtocolFormat

159Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

well-known standard library functions is stored in the Standard Library Function Information
Database, therefore, message fi eld semantics can be derived by querying this database. Although
the documents of these functions or instructions commonly are public, such as the Microsoft
Developer Network (MSDN) or the standard C library, which describe the semantics of the parameter
and the goal of these library functions, we need to manually convert them into the formal function
prototype that PotocolFormat can handle. Table 3 shows parts of the library function prototypes
stored in the Standard Library Function Information Database, the semantics of their input buff er and
output buff er have been defi ned in the prototype.

4. Implementation and Evaluation

4.1 Implementation

Based on the latest Valgrind (version 3.6.1), we have implemented a prototype system of Protocol-
Format as a tool of the Valgrind platform. For the instruction execution monitor in the proposed
system, we use Callgrind that is a profi ling tool under the Valgrind platform as the main framework
of this module. Meanwhile, a great many of binary analysis techniques supported by Valgrind
platform can be utilized during the implementation of this module, these techniques include
instruction translation, memory marking, taint propagation, and others. Because of limited time, we do
not adopt mature database techniques, such as MYSQL or Oracle, to build the Standard Library
Function Information Database in the execution monitor, but merely store the standard library
function prototype in a text fi le. Consequently, once ProtocolFormat starts it will read this text fi le
fi rst, and then store the information in an object based on array structure.

4.2 Evaluation

In order to evaluate the actual eff ect of ProtocolFormat researched in this paper, we will perform
two sets of experiments on ProtocolFormat. The fi rst set of experiments involves seven protocol
messages from four known cryptographic protocol applications. The second set of experiments
involves one protocol message in an unknown cryptographic protocol used by a video communi-
cation application.
The experiment is as the following steps: Firstly, a cryptographic protocol application that can
parse a cryptographic protocol message is launched in ProtocolFormat simulation environment.
Then, after the application fi nishes parsing an incoming message, our system will output a result
table about the format of this message. Therefore, we can evaluate ProtocolFormat by comparing
the result with the protocol specifi cation adopted by this application.

4.2.1 Evaluation on Known Protocols

In this section, the proposed system is evaluated on two well-known cryptographic protocols: SSL
Handshake Protocol and FTP SSL. After ProtocolFormat outputs all the message formats, they will
be compared with the output results of Wireshark 1.6.0. For each cryptographic protocol, we will
choose a typical application that implements this protocol.
For conveniently comparing with the Wireshark, we defi ne two terminologies that relate to the
evaluation indicators of the experiments: leaf fi eld and hierarchical fi eld. A leaf fi eld means that this
message fi eld cannot be further divided into any subfi elds. Hierarchical fi eld indicates that this
message fi eld consists of several subfi elds. We respectively represent the sets of leaf fi elds and
hierarchical fi elds as L and H, and count |LW|, |HW| and |LP|, |HP| in the results of Wireshark and
ProtocolFormat. Then, after comparing with standard protocol specifi cation, we use |E(LP)| and

160 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

|E(HP)| respectively represent the number of errors on the leaf fi elds and the hierarchical fi elds of
message format result produced by ProtocolFormat. In addition, since ProtocolFormat may overly
divide a correct fi eld into several sub-fi elds, we count the total number of these overly divided
fi elds as |OP|.
In this experiment, for each protocol we select a typical application that adopts the protocol as part
of their communication. For SSL Handshake protocol, we evaluate ProtocolFormat with a HTTPS
server and a client browser, and compare the reverse derived message format with wireshark. More
specifi cally, we chose Apache as the HTTPS sever, run it under the environment of ProtocolFormat,
observe the execution of it, and then run Firefox, a browser client, from another physical machine
to establish a SSL connection. The reverse analysis continues until the SSL handshake phrase ends.

For FTP SSL, we select vsftpd 2.3.4 for FTP SSL server and Filezilla 3.5 for FTP client. Similar to the
experiment of SSL handshake protocol, FTP SSL server and FTP client respectively run at diff erent
physical machines under ProtocolFormat. We fi rstly control the FTP client to send a AUTH SSL
request command message to the FTP SSL server, then after the SSL connection is established, we
download a fi le from the sever and close the session. The results are shown in Table 4.
Result analysis. The results of SSL handshake protocol and FTP SSL show that ProtocolFormat can
reversely extract message format satisfactorily, and can even outperform Wireshark when security
applications use lots of library function to operate on received data, such as identifying leaf fi elds
in messages of “Client Hello”, “Client Key Exchange” and “Change Cipher Spec”. However, the results
also show that when network applications do not use standard library functions to parse messages,
ProtocolFormat will not output accurate message format results. In such case, Wireshark will perform
bett er than ProtocolFormat, as shown in the result of “Server Hello” in Table 4.

4.2.2 Evaluation on Unknown Cryptographic Protocol

In this experiment, we evaluate the proposed system on an application that adopts an unknown
cryptographic protocol to hide its communication. We choose a video communication application
as the experimental application that needs to authenticate each communication entity. The mini-
mum system is composed of a server and two user side applications. We only run a client side
program of this communication application in ProtocolFormat environment, and separately run
another client side and server program on two diff erent virtual machines.

 Wireshark ProtocolFormat
 Protocol Message Type |LW| |HW| |LP| |HP| |E(LP)| |E(Hp)| |Op|
 Client Hello 31 7 41 9 1 0 0
 SSL Handshake Server Hello 98 76 29 9 0 0 0
 Protocol Client Key Exchange 13 4 17 6 0 0 0
 Change Cipher Spec 8 2 11 5 1 0 1
 Welcome 2 1 3 1 1 0 0
 FTP SSL Auth SSL Request 2 1 2 0 0 1 0
 Server Response 2 1 2 0 0 1 0

Table 4: Message Format Comparison between Wireshark and ProtocolFormat

161Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

During the experiment, we fi rstly capture a packet from the server to the user, and parse it by
Wireshark, the packet parsing results are shown in Figure 9. According to Figure 9, the Wireshark
cannot decode the application data upon transport layer. We think there are mainly two reasons
for this: on the one hand, maybe the authentication module of this cryptographic protocol appli-
cation program is developed based on a cryptographic protocol specifi cation, however, crypto-
graphic protocol specifi cation commonly does not strictly fi x encryption algorithm, length of each
message fi eld, and others. As a result, diff erent implementations of a same cryptographic protocol
usually have diff erent message formats. Consequently, for the protocol analysis techniques based
on network fl ow, such as OmniPeek and Wireshark, they cannot parse this kind of encrypted
messages for lack of knowledge about how to decrypt it.
After the user side program accomplishes a message parsing process, ProtocolFormat outputs the
message format result as shown in Figure 10.

Figure 9: Wireshark Resolving Result

Figure 10: The Message-processing Tree for an Unknown Protocol

In Figure 10, root node shows that this message (application layer data in network packet) consists
of three message fi elds, they are length fi eld “M1”, encrypted fi eld “0400F1F8” and encrypted fi eld
“0400F1B8”. The decrypted fi eld of the encrypted fi eld “0400F1F8” is “0400EDB0”, and “0400EDB0”
can be further divided into hostname fi eld “0400F34C”, key fi eld “0400F360”, and two general
fi elds “0400F380”, “0400F384”. Similarly, the decrypted fi eld of the encrypted fi eld “0400F1B8” is
“0400FCB0”, and “0400FCB0” can be further divided into hostname fi eld “0400F3A8” and key
fi eld “0400F360”.

162 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

According to the hierarchical structure of the message format, we can further describe the message
format as:

M1, {0400F34C,0400F360,0400F380,0400F384}K, {0400F3A8,0400F360}K
Moreover, we fi nd there is an intersecting tree node “0400F360”, of which the background colour
is black in Figure 10, between the two decrypted fi elds. Usually, it means that the two decrypted
fi elds have a common fi eld.

5. Related Work

In this section, we present the related work and compare it with ProtocolFormat. Note that the
instruction execution monitor relies heavily on the dynamic taint analysis technique. Moreover,
since this technique has been widely investigated in recent years, there exist abundant related
works for taint analysis (Chow et al, 2004; Crandall et al, 2006; Manuel et al, 2007; Newsome and
Song, 2005; Suh et al, 2004; Philipp et al, 2007; Heng et al, 2007). Therefore, the detailed description
is omitt ed in this section.
As mentioned before, protocol reverse engineering has recently received signifi cant att ention for
its importance to analyzing network security applications. The Protocol Informatics (PI) project
and Discoverer are network-based reverse approaches; therefore, they extract the message format
from collected network traces. For just only requiring collection of network fl ow, these kinds of
approaches have advantages when a protocol parsing application is not available, However, they
become less eff ective in face of the encrypted network fl ow.
Unlike the PI and Discoverer projects, several reverse systems such as Polyglot (Caballero et al,
2007), AutoFormat (Zhiqiang et al, 2008), Tupni (Cui et al, 2008), Prospex (Comparett i et al, 2009),
Dispather (Caballero et al, 2009; Juan et al, 2009), and ReFormat (Zhi et al, 2009) which from host
perspective, share the key insight that how a protocol application recognizes and parses protocol
messages provides valuable information about message format. Based on the insight, Autoformat
collects and analyzes run-time execution context information to infer message format by recog-
nizing and leveraging fi eld specifi c execution context. In addition, Prospex makes further progress
to uncover protocol specifi cation. However, all these system are mainly designed to work with
plain-text input message except ReFormat. Therefore, they all become ineff ective when analyzing
encrypted protocol messages.
In the current existing protocol reverse engineering approaches, ReFormat can extract the message
format when the message is encrypted. However, there are also many limitations, for example,
when the processing of a message involves signifi cant arithmetic and bitwise operations, Reformat
may not work properly. Furthermore, ReFormat assumes an application fi rst decrypts an encrypted
message and then processes the decrypted message, thus, if an application decrypts part of the
message and processes it before decrypting and processing the rest, ReFormat will stop working
because it can’t identify the whole decrypted message correctly. That may be particularly trouble-
some because a cryptographic protocol message commonly contains several encrypted message
fi elds and plain-text fi elds, so ReFormat cannot extract message format from this kind of message.
Comparing to ReFormat, ProtocolFormat relies on another technique to locate the decrypted memory
buff ers: identifi cation of calls to standard decrypted function. Similar to other program-based
system, ProtocolFormat relies on dynamic taint analysis technique, this technique has been proposed
in Newsome and Song (2005).

163Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

6. Limitations and Future Work

In this section, we discuss about the limitations of ProtocolFormat and suggest possible improve-
ments for future work.
ProtocolFormat relies heavily on the knowledge of relevant standard library function. For example,
according to the semantics of the network receive library function recvfrom(), the memory copy
library function memcpy(), and the decryption library function EVP_DecryptUpdate(), the message
parsing process can be divided into a packet receiving phase, a message fi eld extraction and pars-
ing phase, a message fi eld decryption and parsing phase, and an end-of-message parsing phase.
Accurate identifi cation of these message-processing phases strongly determines whether Protocol-
Format can reverse derive the message format correctly. To take another example, ProtocolFormat
relies strongly upon the semantics of function arguments because ProtocolFormat can create the
tainted buff er or the “message processing tree” correctly only when it obtains the accurate
semantics and values of the function arguments. Consequently, for network applications that
implement decryption or memory duplication using their own binary program, ProtocolFormat
may not work properly. One possible way to solve these problems is to discover other characteristics
used for identifying diff erent message parsing phases.
ProtocolFormat is mainly used for analysis of benign applications. Therefore, in the proposed
design, how to reversely analyze programs that adopt code obfuscation techniques is not con-
sidered. In other words, if the network application intentionally introduces abundant redundant
instructions, e.g., by embedding unnecessary memory-related library function call instructions
that take the receive buff er as a source argument, then the analysis of ProtocolFormat can be
potentially evaded. Making ProtocolFormat applicable to reverse analyze obfuscated applications
is still a technical challenge now.
ProtocolFormat identifi es whether a network application is extracting a message fi eld mainly by
observing calls to memory-related library functions. However, if the application uses “zero-copy
technique”, it will not call the memory copy library function to extract message fi elds. Therefore,
even though the application has extracted a message fi eld, the dependency chain of these tainted
data may be unchanged. In this case, ProtocolFormat cannot divide the message fi eld according to
the calling sequence of each tainted data.
As for the granularity of message reverse analysis, the current version of ProtocolFormat can
analyze the message format only at byte granularity; how to analyze the protocol fi eld at the bit
level is being considered. Subsequent proposed work includes re-implementing tainted marking
and propagation at the bit level so that future versions of ProtocolFormat can analyze protocol
fi elds of less than one byte.
ProtocolFormat can only reverse analyze each message independently and cannot correlate multiple
messages in the same protocol session. However, the fi nal goal of this research is to reverse
reconstruct the cryptographic protocol specifi cation from the implementation of the cryptographic
protocol. Therefore, improving the proposed approach to reverse analyze the sequential logic
from multiple messages in a single protocol session and to reconstruct the entire protocol state
machine is part of the authors’ proposed future work.

7. Conclusion

In this paper, ProtocolFormat is proposed, which is a system used for reverse extracting the message
format from a cryptographic protocol applications program. The design of ProtocolFormat is

164 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

mainly based on the assumption that the parsing of incoming messages in cryptographic protocol
applications is entirely based on calls to standard library functions. This paper fi rst introduces the
entire system workfl ow, the critical data structures, and the structure, principle, and functions of
each module in detail, and then conducts an evaluation of ProtocolFormat by performing two sets
of experimental tests. The experimental results show that ProtocolFormat can accurately analyze
messages from cryptographic protocol applications which are developed using standard library
functions. Of course, the proposed system also contains many defects and problems, and therefore
many improvements will subsequently be required. These are: (1) fi nding more characteristics
that can be used to identify various message parsing phases; (2) further refi ning the granularity of
reverse analysis so that future versions of ProtocolFormat can analyze a bit-level protocol fi eld,
thereby achieving the purpose of improved analytical accuracy; and (3) improving the proposed
approach to analyze and correlate multiple messages in a single protocol session, making it
possible to reconstruct a cryptographic protocol specifi cation from a cryptographic protocol
application.

Acknowledgements

The authors are grateful to the reviewers for their insightful comments that helped improve the
presentation of this paper. Part of this work was supported by the National 863 High Tech
Programs No. 2011AA01A103, and the National Natural Science Foundation of China under
Grants No. 60873215 and No. 61003303.

References

CABALLERO, J., HENG, Y. and ZHENKAI, L. (2007): Polyglot: Automatic Extraction of Protocol Format
Using Dynamic Binary Analysis, Proc. the 14th ACM Conference on Computer and Communications Security,
Alexandria, USA.

CABALLERO, J., POOSANKAM, P. and KREIBICH, C. (2009): Dispatcher: Enabling Active Botnet Infi ltra-
tion using Automatic Protocol Reverse-Engineering, Proc. CCS’09, Chicago, Illinois, USA, 621–634, ACM Press.

CHOW, J., PFAFF, B., GARFINKEL, T., CHRISTOPHER, K. and ROSENBLUM, M. (2004): Understanding
Data Lifetime via Whole System Simulation, Proc. the 13th USENIX Security Symposium, San Diego, CA, 22–38,
USENIX Association Press.

COMPARETTI, P.M., WONDRACEK, G., KRUEGEL, C. and KIRDA, E. (2009): Prospex: Protocol Specifi -
cation Extraction, Proc. 30th IEEE Symposium on Security and Privacy, Oakland, CA, 110–125, leee Press.

CRANDALL, J .R., WU, S.F. and CHONG, F.T. (2006): Minos: Architectural support for protecting control data,
Transactions on Architecture and Code Optimization, 3(4): 359–389.

CUI, W., PEINADO, M. and CHEN, K. (2008): Tupni: Automatic Reverse Engineering of Input Formats, Proc.
ACM Conference on Computer and Communications Security, Alexandria, Virginia, USA, 391–402, ACM Press.

DAVID, W. and BRUCE, S. (1996): Analysis of the SSL 3.0 protocol, Proc. the Second USENIX Workshop on
Electronic Commerce, Oakland, California, 29–40, USENIX Association Press.

ERIC, R. (2001): SSL and TLS: Designing and Building Secure Systems, Addison-Wesley Professional.
GILBERT, W., PAOLO MILANI, C. and CHRISTOPHER, K. (2008): Automatic Network Protocol Analysis,

Proc. the 15th Annual Network and Distributed System Security Symposium, San Diego, California, USA, 1–18,
Citeseer Press.

HENG, Y., DAWN, S., EGELE, M., KRUEGEL, C. and KIRDA, E. (2007): Panorama: Capturing system-wide
information fl ow for malware detection and analysis, Proc. the 14th ACM Conferences on Computer and Commu-
ni cation Security (CCS’ 07), October.

ISO/IEC 9899:1999 (1999): C programming language standard (online), available: htt p://www.open-std.org/jtc1/
sc22/wg14/www/docs/n1124.pdf.

JUAN, C., PONGSIN, P., CHRISTIAN, K. and DAWN, S. (2009): Bidirectional Protocol Reverse Engineering:
Message Format Extraction and Field Semantics Inference, UC-Berkeley: EECS.

165Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

MANUEL, E., CHRISTOPHER, K. and ENGIN, K. (2007): Dynamic spyware analysis, Proc. the 2007 USENIX
Annual Technical Conference (Usenix’ 07), June.

MARSHALL, B. (2004): ‘The Protocol Informatics’, (online), available: htt p://www.4tphi.net/~awalters/PI/PI.
html.

MICROSOFT DEVELOPER NETWORK (2011): (online), available: htt p://msdn.microsoft.com.
NETHERCOTE, N. (2004): Dynamic Binary Analysis and Instrumentation, University of Cambridge.
NETHERCOTE, N. and SEWARD, J. (2007): Valgrind: A Framework for Heavyweight Dynamic Binary Instru-

mentation, Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’07), San
Diego, California, USA, 42: 89–100, ACM Press.

NEWSOME, J. and SONG, D. (2005): Dynamic Taint Analysis for Automatic Detection, Analysis,and Signature
Generation of Exploits on Commodity Software, Proc. the 14th Annual Network and Distributed System Security
Symposium (NDSS 2005), San Diego, CA, Citeseer Press.

PHILIPP, V., FLORIAN, N., NENAD, J., ENGIN, K., CHRISTOPHER, K. and GIOVANNI, V. (2007):
Cross-site scripting prevention with dynamic data tainting and static analysis, Proc. the 14th Annual Network
and Distributed System Security Symposium (NDSS’ 07), San Diego, CA, Press, February.

SHAIKH, S. and BUSH, V. (2005): Analysing the Woo-Lam Protocol Using CSP and Rank Functions, Journal of
Research and Practice in Information Technology, 38(2): 19–29.

SUH, G.E., LEE, J. and DEVADAS, S. (2004): Secure program execution via dynamic information fl ow tracking,
Proc. International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’ 04), Boston, Massachusett s.

VALGRIND (2011): valgrind-3.7.0 [online], available: htt p://valgrind.org/.
WEIDONG, C., KANNAN, J. and WANG, H.J. (2007): Discoverer: Automatic Protocol Reverse Engineering

from Network Traces, Proc. the 16th USENIX Security Symposium, Bostonm, MA, 199-212, USENIX Association
Press.

WIRESHARK, (2011): [online], available: htt p://www.wireshark.org.
WOO, T.Y.C. and LAM, S.S. (1992): Authentication for distributed systems, Computer, 25(1): 39–52.
ZHI, W., XUXIAN, J., WEIDONG, C., XINYUAN, W. and GRACE, M. (2009): ReFormat: Automatic Reverse

Engineering of Encrypted Messages, Proc. the 14th European conference on Research in Computer Security
(ESORICS’09), 200–215, Springer-Verlag Press.

ZHIQIANG, L., XUXIAN, J., DONGYAN, X. and XIANGYU, Z. (2008): Automatic Protocol Format Reverse
Engineering Through Context-Aware Monitored Execution, Proc. the 15th Annual Network and Distributed
System Security Symposium (NDSS 2008), San Diego, California, USA, Press.

Biographical Notes

Meijian Li received his MSc in traffi c information and control engineering from the
Military Transportation University, China in 2009. Then he received his PhD in
network and information security from the National University of Defense
Technology, China, in 2014. Since then, he has worked with the Chinese Air Force as
an engineer. His research interests include network securty, network protocol reverse
engineering and web development.

Professor Yongjun Wang received his MSc and PhD in computer science from the
National University of Defense Technology, China, in 1995 and 1998 respectively.
Since then, he has worked at the School of Computers, National University of Defense
Technology as a lecturer, associate professor and full professor in 1998, 2000 and
2006 respectively. His current research interests are network security, system
security and high performance network.

Meijian Li

Yongjun Wang

166 Journal of Research and Practice in Information Technology, Vol. 46, No. 2/3, August 2014

Message Format Extraction of Cryptographic Protocal Based on Dynamic Binary Analysis

Shangjie Jin received his BSc in vehicle engineering, and his MSc in power mach-
inery and engineering from the Military Transportation University, China, in 2005
and 2008 respectively. He is currently an engineer at this same university. His
research interests include network protocol reverse engineering and security protocol
formal analysis.

Shanshan Liu received his BSc from the PLA Information Engineering University,
China, in 2005. Since then, he has gained a masters degree and graduated from the
Military Transportation University, China, where he is currently an assistant pro-
fessor. His research interests are information security and automatization.

Peidai Xie is a PhD student at the School of Computer, National University of
Defense Technology, China. He is interested in all aspects of computer network and
system, including malware, binary analysis, network protocol reverse engineering,
etc.

Zhen Huang received his bachelor degree in computer science and technology from
the National University of Defense Technology, China in 2006. From September
2006 to March 2008, he pursued the masters degree in computer science and
technology at the same university. He was recommended to pursue a PhD degree in
advance since March 2008, and received his PhD in 2012. His research interests are
distributed storage systems including peer-to-peer backup systems and cloud storage
systems.

Shangjie Jin

Shanshan Liu

Pedai Xie

Zhen Huang

