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The proliferation of malware (viruses, Trojans, and other malicious code) in recent years has
presented a serious threat to individual users, enterprises, and organizations alike. Current static
scanning techniques for malware detection have serious limitations; on the other hand, sandbox
testing fails to provide a complete satisfactory solution either due to time constraints (e.g., time
bombs cannot be detected before its preset time expires). What is making the situation worse is the
ease of producing polymorphic (or variants of) computer viruses that are even more complex and
difficult than their original versions to detect.

In this paper, we propose a new approach for detecting polymorphic malware in the Windows
platform. Our approach rests on an analysis based on the Windows API calling sequence that
reflects the behaviour of a particular piece of code. The analysis is carried out directly on the PE
(portable executable) code. It is achieved in two basic steps: construct the API calling sequences
for both the known virus and the suspicious code, and then perform a similarity measurement
between the two sequences after a sequence realignment operation is done. An alternative
technique based on comparing the bags of API calls, and the technique’s performance, are also
studied. Favourable (in terms of time and accuracy of detection) experimental results are obtained
and presented.
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1. INTRODUCTION
The risk of using the Internet has increased tremendously. The connectivity of the Internet that is
vital to individual users and enterprises may also expose their critical, valuable information and/or
information systems to attacks and adversaries. One of the greatest recent threats to security has
come from automated, pre-scanned, self-propagating attacks such as blended viruses and worms.
These attacks scan at random until they are able to place a harmful program on the victim server
using a maliciously crafted request. The program then uses the now-infected server as a base from
which to attack other vulnerable servers. The result is an exponential growth in the number of
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attackers leading to load-induced network failure. Though organizations have a wide variety of
protection mechanisms (firewalls, anti virus tools, and intrusion detection systems) against cyber
attacks, recent hybrid and blended malware like Sasser, Blaster, Slammer, Nimda and CodeRed
have worked their way past the current security mechanisms. Due to the seemingly increasing
number and intensity of malware attacks, information security companies and researchers are hard-
pressed to find effective new ways to help thwart or defend against such attacks. 

Bergeron et al (1999) gave a classification of malware into three generations, based on payload,
enabling vulnerability.

A. First Generation
• Malware that share the properties of a virus
• Requires human action to trigger replication and spreading
• Propagates via email and file sharing
Examples: Melissa, LoveLetter, VBScript worm, SoBig

B. Second Generation
• Malware that shares the properties of a worm
• Does not require human intervention for replication and spreading
• Automatic scanning of victims for vulnerabilities
• Hybrid in nature, blended with viruses and trojans
• Propagates via Internet
Examples: Slapper worm, SQL Slammer worm, and Blaster worm

C. Third Generation
• Pre-complied vulnerable targets
• Exploits known and unknown vulnerabilities to the broader security communities
• Employs multiple attack vectors
• Geographical region- or organization-specific malware
• Attack security technologies and products

Theoretical studies by Cohen (1987) and Chess et al (2000) on virus detection have shown that
there is no algorithm that can detect all types of viruses; while heuristics-based static analysis
techniques have been proposed by researchers for virus detection. The rise in the number of variants
of original malware and their effects have shown the inability of many commercial-grade antivirus
scanners to detect even slight modifications to the original virus; thus making obfuscation and de-
obfuscation of vicious executables an interesting problem, as presented in Strehl’s work (2002).
Detection techniques using a program annotator have been proposed by Bergeron et al (1999) and
Collberg (2002), however, the amount of time taken for analysis by these techniques as reported by
the authors for even simple malware is too high for them to be suitable for real time detection.

Polymorphic and metamorphic viruses and polymorphic shellcodes (Detristan et al, 2003) are
designed to bypass detection tools. There is strong evidence that commercial malware detectors are
susceptible to common evasion techniques used by malware writers: previous testing work has
shown that malware detectors cannot cope with obfuscated versions of worms (Christodorescu and
Jha, 2004), and there are numerous examples of obfuscation techniques designed to avoid detection
(Mohanty, 2004 published online http://www.hackingspirits.com/eth-hac/papers/whitepapers.asp;
Ször, 2005). Christodorescu et al (2005) describes the design and implementation of a malware
normalizer that undoes the obfuscations performed by a malware writer. The experimental
evaluation demonstrates that a malware normalizer can drastically improve detection rates of
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commercial malware detectors. Some advanced pattern recognition methods are applied in a few
commercial scanners to distinguish a virus from a non-virus (IBM Antivirus Research “Digital
Immune System” available at http://www.research.ibm.com/antivirus/; Chu et al “Virus A
Retrospective” available at http://cse.stanford.edu/class/cs201/projects-00-01/viruses/anti-virus.
html/.). Kruegel et al (2004) presents novel binary analysis techniques for static disassembly of
obfuscated Intel x86 binaries based on control flow graph information and statistical methods.
Udupa et al (2005) shows that it may be possible to bypass much of the effects of some code
obfuscations by a combination of static and dynamic analyses. However, to the best of our
knowledge, to this date little research seems to have been performed on detecting obfuscated
malware.

In the remainder of this paper, the term “polymorphic malware” means specifically obfuscated
malware. Our work for polymorphic or obfuscated malware detection is based on the assumption
that an original malware, M, contains a malicious sequence of API calls, S. A variant of the original
malware that is obtained by obfuscation retains the functionality of the original malware and
contains a set of system calls S’. The problem is to find the similarity measure between S and S’.
Since the original functionality is preserved, it is reasonable to assume that the “difference” between
S and S’ is not “large”. We implement an antivirus scanner, SAVE (Static Analyzer for Vicious
Executable), to prove our assumption. Section 2 and 3 introduce the obfuscation techniques.
Sections 4, 5 and 6 discuss how SAVE works including the description of PE binary parser and the
similarity measure algorithms. The performance study is presented in Section 7. Finally, Section 8
presents our conclusions and proposes our idea for future work.

2. MALWARE USED FOR ANALYSIS
In this paper, several recent viruses (executables) were used for analysis; specifically, we employed
four viruses and their variants. The description of the viruses below is given based on the payload,
enabling vulnerability, propagation medium, and the systems infected.

W32.Mydoom: A mass mailing worm and a blended back door that arrives with as an
attachment with file extensions .bat, .cmd, .exe, .pif, .scr or .zip according to the report from
Symantec company, a well known anti virus software company. The pay load performs a denial of
service against www.sco.com and creates a proxy server for remote access using TCP ports 3127
through 3198. W32.Mydoom infects all Windows systems.

W32.Blaster: Exploits windows DCOM RPC vulnerability using TCP port 135. The pay load
launches a denial of service attack against windowsupdate.com, might cause systems to crash and
opens a hidden remote cmd.exe shell. W32.Blaster propagates via TCP ports 135, 4444 and UDP
port 69 and infects only Windows 2000 and XP. 

W32.Beagle: A mass mailing worm blended with a back door. The worm contains large scale
email with extensions, .wab, .htm, .xml, .nch, .mmf, .cfg, .asp, and etc, according to the report from
Symantec Company. Uses its own SMTP engine, TCP port 2745 to spread and also tries to spread
via file sharing networks like Kazza. W32.Beag infects all Windows systems. 

Win32.Bika: According to virus library it is a harmless per-process memory resident parasitic
Win32 virus. It infects only Win32 applications. The virus writes itself to the end of the file while
infecting. Once the host program is infected it starts the virus hooks “set current directory” Win32
API functions, SetCurrentDirectoryA, SetCurrentDirectoryW that are imported by the host program
and stays as a background thread of the infected process, and then infects files in the directories
when the current directory is being changed. The virus does not manifest itself.
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3. OBFUSCATION
In its simplest form, obfuscation is obscuring some information such that another person cannot
construe its true meaning. This is certainly true for code obfuscation where the objective is to hide
the underlying logic of a program.

According to the research of Collberg et al (2002), code obfuscation has been compared to code
optimization where code optimization is a transformation that minimizes a program’s certain metric
such as execution time or execution size, while code obfuscation has the additional requirement that
the code transformation also maximizes obscurity. When we optimize for speed we generally try to
take advantage of hardware pipelines, memory buffers, etc., while leaving the program essentially
the same. Any optimization that changes the program’s functionality or logic cannot be applied
blindly and is generally avoided.

Obfuscation has also been applied to program watermarking and is a well-known technique to
prevent reverse engineering, for example Krishnaswamy et al (2002) proposed an approach on
software watermarking based on obfuscation. In general, obfuscating a program to prevent reverse
engineering is similar to a classic cryptography game: you try to make reversing your obfuscation
hard enough such that it is impractical to attack. Given enough time and resources any obfuscation
can be reversed; but as long as it requires excessive amounts of resources and effort to be infeasible,
most will not bother and so it may be considered secure. By obfuscating one can prevent another
individual from gaining knowledge about his program. With respect to malware, code obfuscation is
an appealing technique to hinder detection. A simple obfuscation technique may render a known virus
completely invisible to conventional scanners with very little effort on the part of the virus writer.

Applying an obfuscation transformation to a program has the advantage that it is essentially self-
decrypting encryption. The code is rendered incomprehensible while still remaining a viable
program.

3.1 Obfuscation Theory
An elegant method to describe the code obfuscation problem was presented by Collberg and
Thomborson (2002). Given a program P and a set of obfuscation transformations T we want to
generate program P’ such that:

• P’ retains the functionality of P
• P’ is difficult to reverse engineer
• P’ performs comparably to P, i.e. the cost of obfuscation is minimized

Obfuscation transformations need to be resilient. After applying transformation Ti to program
statement Sj and generating an obfuscated statement Sj’, it must be prohibitively hard to build an
automated tool that can generate Sj from Sj’. As long as the meaning or logic of the transformed
statement is sufficiently ambiguous a series of transformations will deter reverse engineering.

3.1.1 Data
Data obfuscation changes the look of a program by modifying the constants or encapsulated bits of
data. An example would be to split a string hello world into smaller strings, such as he, ll, and o.
Another method would be to separate a Boolean variable into two integers and use comparisons
between the two to emulate the True / False properties of the original.

In general, complex data transformations require the addition of “helper code” if the original
functionality is to be maintained. In the example above, we would need to generate code to
concatenate the small strings together to get the original “hello world” before using it.
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3.1.2 Control Flow
Control flow transformations focus on obscuring how the program runs. For example, inserting junk
code into a program changes its appearance considerably but does not change the logic. A more
complex example would be to use global pointers for control flow. If we use pointers p and q and
insert a statement like if (p == q) then it is nearly impossible to determine if this statement is true
or false using static analysis. Such a combination of pointers and control flow statements is
considered opaque because of the difficulty inherent in pointer alias analysis.

This type of obfuscation is particularly appealing to malware authors because of its strength. We
see control flow transformations implemented in polymorphic and metamorphic engines where the
code changes with each host infected.

3.1.3 Other techniques
Data and control flow are not the only techniques that can be used to obscure a program’s meaning
or prevent reverse engineering. Many software authors make use of antidisassembly and anti-
debugging techniques to hinder analysis. In general, these are “tricks” that slow down automated
tools such as disassembles. Byte code scramblers are also used to obfuscate strongly typed bytecode
such as Java’s. All of these techniques, combined with a generous helping of data and control flow
obfuscation, help make code analysis exorbitantly difficult.

3.2 Classification
For simplicity we have separated the obfuscation techniques into six general categories. Because of
the complexity in implementing and detecting pointer aliases we gave them their own category. As
a general rule the complexity and robustness of the technique increases the greater the type. Straight
control flow obfuscation is (in general) not as robust as both data and control flow obfuscation
together. These types assume a low level language such as x 86 assemblies.

Type 1: Null operations and dead code insertion
NOPs are inserted into the code. There is virtually no modification to data or control flow. An
example of a type 1 transformation is presented in Figure 1 below. On the left we have the original
code and on the right we have the modified code with null operations inserted every two lines. 

Inserting null operation is similar to inserting white space in a document: it may take longer to
read but no more difficult as the content remains the same.

Type 2: Data modification 
Some data obfuscation transformation is applied, such as string splitting or variable type
replacement. For example, we could replace a Boolean variable with two integers. If they are equal,

Original code After transformation

mov eax, -44(ebp) mov eax, -44(ebp)

mov -44(ebp), ebx mov -44(ebp), ebx

sub 12, esp nop

lea -24(ebp) sub 12, esp

push eax lea -24(ebp)

nop

push Eax

Figure 1: Example of null operation insertion
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the statement is true, otherwise it is false. In the example above (Figure 2), x is a Boolean variable
and a and b are integers. The code on the left is the original control flow and the code on the right
performs exactly the same but has a different signature.

Type 3: Control flow modification 
Control flow transformations are applied. Code is swapped around and jump instructions are
inserted. For example, we could copy the contents of a subroutine to another location in the file and
add jumps to and from the subroutine. The code would function exactly the same but look quite
different. In Figure 3 below, three lines of code have been shifted to some location (denoted as
[shift]) and helper code has been inserted.

Type 4: Data and control flow obfuscation 
We pull out all the stops and combine data and control flow transformations. At this level junk code
is inserted and variables can be completely replaced with large sections of needless code. For
example, we can modify all integer variables as above and transpose the program’s entry point as
in Figure 4.

Type 5: Pointer aliasing
The final step is to introduce pointer aliasing. Variables are replaced with global pointers and
functions are referred to by arrays of function pointers. This type of transformation is relatively easy
to implement using high level languages that allow pointer references but tricky (at best) using

Original code and meaning

cmpb 0, x If (x == true)

je .sub goto sub

Transformed code and meaning

mov a, eax If (a < b)

cmpl b, eax goto sub

jge .sub

Figure 2: Example of data flow obfuscation

Original code After transformation

cmp 24, eax Jmp [shift]

jne .sub Nop

sub 12, eax Nop

push eax Push Eax

… …

Cmp 24, eax

Jne .sub – [shift]

Sub 12, eax

Jmp -[shift]

Figure 3: Example of control flow obfuscation
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assembly languages. Pointer aliasing can be as simple as changing a = b into *a = **b or as complex
as converting all variables and functions into an array of pointers referenced by pointers to pointers.

3.3 Obfuscation Used in this Project
In our research we discovered that most commercial virus scanners can be defeated with very
simple obfuscation techniques. For example, simple program entry point modifications consisting
of two extra jump instructions effectively defeated most scanners. Therefore, we only used the bare
minimum level of obfuscation needed to prevent detection. Our goal was to show how trivial it is
to modify recent malware to defeat existing scanning techniques using only the compiled
executable and a few tools.

The binary code is disassembled into a more readable format so that we may understand what
the program is doing. Someone with fore-knowledge about the malware need not spend so much
time analyzing the program. Once we have the disassembled program and have studied it, we pick
out an area to attack. The first target when applying a control flow transformation is to attack the
program’s entry point. But when using a data transformation we generally have to take a guess. We
decide where and what modifications need to be performed and change the binary file directly,
using the disassembled version as a guide or map. Once all modifications have been made, the file
is examined using the anti-virus scanners.

All variants with the exception of the MyDoom virus were generated using of the shelf hex
editing tools. We were fortunate enough to have a copy of the MyDoom.A source code and made all
our modifications using the Microsoft Visual development suite. 

4. SYSTEM ARCHITECTURE
Our approach is performed directly on PE (Windows Portable Executable) binary code, which is
designed as a common file format for all flavours of windows, on all supported CPUs. Our approach
is structured into two major steps illustrated in Figure 5. 

Firstly, a suspicious PE file is optionally decompressed if it is compressed by using a third party
binary compress tool, for example USP Shell, created by Oberhumer (2000), and then passed via a
PE binary parser. The output of PE binary parser is a sequence of Windows APIs. An API calling

Original code After transformation

Cmp 24, eax jmp [shift]

Jne .sub nop

Sub 12, eax nop

Push eax push Eax

… …

mov 24, eax

cmpl b, eax

jle .dead_code

jne .sub – [shift]

sub 12, eax

jmp -[shift]

Figure 4: Example of data and control flow obfuscation
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sequence consists of a group of 32-bit global ids which represent the static calling sequence of
corresponding API functions. The signature of known Win32 virus is also an API sequence
generated by the same technique. The signature is stored in a signature database together with other
known Win32 virus signatures. 

To determine whether a suspicious PE file, s, is a variant of a particular virus, v, or not, we pass
the suspicious API sequence together with every signature sequence of v from the signature
database through a similarity measure module, which calculates the similarity between the
suspicious API sequence and API sequence of v. The output is compared to a threshold to determine
whether s is a variant of v. If the similarity value is larger than the threshold, a positive flag is raised.
In order to report a non virus, s should be measured against all v in the signature database, and get
no positive output it is observed.

5. BINARY PARSER
We developed a PE binary parser instead of using a third party disassembler, in order to improve
the overall system performance. Most third party disassemblers output a text file for the
disassembled code, which should be parsed to extract the necessary features for further analysis.
The text processes greatly degrade the overall system performance. Furthermore, we are only
interested in Win32 API calling sequence in a PE file instead of all disassembled instructions, which
the third party disassemblers spend much time to process. We decided to develop a special purpose
PE binary parser to reduce the intermediate text process and get only the necessary information
from a PE file, since a virus scanner is highly speed sensitive.

The major structure of a PE file is illustrated in Figure 6. Every PE file begins with a small MS-
DOS executable. After the DOS header is a PE header, which includes a main file header and an
optional header to specify how the PE file is stored. Immediately following the PE header is the
section table. The section table provides information about all sections names, locations, lengths
and characteristics. There is at least one section following the section table. A PE section represents

Figure 5: The architecture of our anti-virus system
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a code or data of some sort. While code is just code, there are multiple types of data. Besides
read/write program data, other types of data in sections include API import and export tables,
resources and relocations. 

Our PE parser is built to extract static API calling sequence. Three major steps should be
performed to achieve that goal. First of all, we locate the Imported Address Table (IAT), which
contains the pointers to the imported API hints and names. Then generate binary lookup tree from
all imported API. Secondly, we scan code section(s) to extract the CALL instructions and their
target addresses. Then search the target address in the binary lookup tree to find the corresponding
API. Finally, we map the API name with its module name to a 32 bits unique global API id by a
lookup table.

5.1 Locating the Imported Address Table
Within a PE file, there is an array of data structures, one per imported module. Each of these
structures gives the name of the imported module and points to an array of function pointers. The
array of function pointers is known as IAT, discussed by Pietrek (2002). To locate the IAT we should
firstly extract the optional header, which appears at the end of PE header. At the end of the optional
header, there is a DataDirectory array, which is the address book for important locations within 
the executable. We can find the DataDirectory entry for imports by specifying the index
IMAGE_DIRECTO RY_ENTRY_IMPORT in the DataDirectory array. The imports entry points to
an array of IMAGE_ IMPORT_DESCRIPTOR structure. There is one such structure for each
imported module. Figure 7 shows a PE file importing some APIs from KERNEL.DLL.

After getting the IAT, for each API we calculate its relative virtual address (RVA) by RVA(APIi)
= address(import descriptor) + image_base + offset(APIi), where address is the address of import
descriptor, image_base is specified in the PE header. All the relative virtual address should be biased
by the image base, shown in the format specification from Microsoft. RVA is a very important
feature that allows us to find the target API name from the target address of CALL instruction. We
store the set of API names, API module names and the corresponding RVAs in a binary tree for
efficient looking up.

Figure 6: Overview of PE file structure
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5.2 Scanning Code Sections 
By referring to the section table immediately following the PE header we can locate all the code
sections in the PE file. For each code section, we scan the whole section for CALL instructions. A
piece of machine codes from malware Mydoom and the corresponding assembly codes are shown
in Figure 8. The CALL instruction we are interested in is FF1504104A00. The corresponding
assembly instruction could be checked from Intel’s instruction reference. The instruction in this
example is ‘CALL dword ptr [004A1004]’, where 004A1004 is the RVA of the target API. We then
search the RVA in the look up binary tree to find the corresponding API and its module, which is
‘ADVAPI32.RegOpenKeyExA’. After scanning the whole code section we get a set of strings,
which stores the names of the called APIs and the names of their modules. 

5.3 Mapping API
We map each API name with its module name to a global id through a lookup table, which is a fixed
table storing the most frequently used Win32 DLL and their APIs and the corresponding pre-
assigned id. The global id is a 32-bit integer. The first (most significant) 12 bits of the integer
represent a particular Win32 dynamic link library, and the rest 20 bits specify a particular API in
this module. For example, the API ‘ADVAPI32.RegOpenKeyExA’ described in the last section is
encoded as 0x00500E13. By using integer representation, we can avoid the costly string comparison
operations. It will be discussed in detail in the next section.

6. SIMILARITY MEASURE
By using the mechanism described above, we construct the API sequence of a suspicious PE binary
file. Let’s denote it Vu (vector of unknown). The API sequence of a known virus is called signature.

Figure 7: IMAGE_IMPORT_DESCRIPTOR

Figure 8: A sample of machine code from the code section of MyDoom. 
The corresponding API is ADVAPI32.RegOpenKeyExA.
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Let’s denote the signature sequence Vs (vector of signature). To decide if the new executable file is
an obfuscated version of the virus represented by Vs, we measure the similarity between Vs and Vu.
One of the most common measures is the Euclidean distance (1). 

(1)

However, Euclidean distance may not be a good similarity measure at times. For example,
consider below three vectors: 

V1 = (1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9)
V2 = (9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1)
V3 = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)

Most people would perceive V1 and V2 as the closer pair of sequence.
If the Euclidean distance is used, however, the distance between V1 and V2 is greater than that

between V2 and V3, as D(V1, V2) = 27.71 while D(V2, V3) = 13.86
We use a sequence alignment technique similar to the algorithm proposed by Wilson (1998) to

solve this problem. Consider the following two sequences: “WANDER” and “WADERS”, the best
alignment should be 

WANDER-
WA-DERS

The optimal alignment algorithm can be conceptualized by considering a matrix with the first
sequence placed horizontally at the top and the second sequence placed vertically on the side. Each
position in the matrix corresponds to a position in the first and second sequence. Any alignment of
the sequences corresponds to a path through the grid, as in Figure 9.

Using paths in the grid to represent alignments provides a method of computing the best
alignments. The score of the best path up to that position can be placed in each cell. Beginning at
the top left cell, the scores are calculated as the sum of the score for the element pair determined by
the score of the row and column heading (0 for mismatches and 1 for matches) and the highest
score in the grid above and to the left of the cell.

Figure 10 shows the alignment algorithm step by step. Let’s take a deeper look at shadowed 4
and 3. 4 is generated as a max score in left above matrix plus the score for a matching, that is 3 plus
1. 3 is calculated as a max score in left above matrix plus score for mismatching, that is 3 plus 0. 

In our case, API sequences Vs and Vu are inserted with some zeros to generate Vs’ and Vu’,
which have optimal alignment.

Figure 9: Sequence alignment represented by path through grid
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Next, we apply the traditional similarity functions on Vs’ and Vu’. Cosine measure (2), extended
Jaccard measure (3) and Pearson correlation measure (4) are the popular measures of similarity for
sequences. The cosine measure captures a scale-invariant understanding of similarity. 

(2)

The extended Jaccard measure is computed as (3), which measures the ratio of the number of
shared attributes of Vs’ and Vu’ to the number of attributes possessed by Vs’ or Vu’. 

(3)

The Pearson’s correlation measure is defined as (4), which measures the strength and direction
of the linear relationship between Vs’ and Vu’.

(4)

The reason to utilize three different measures is that none of them can output the effective results
for all sequence measures. Table 1 illustrates three examples to demonstrate how these measures
mutually correct each other. 

The first example shows a shortened version of the most common cases in our experiments. Tiny
changes in the API sequence indicate that two files perform very similar functions, that is to say the
suspicious executable is an obfuscated virus. The effective output in this case is 1.0. In this case the
cosine measure gives the best output. The second and third examples show two exceptions that
cannot be measured correctly by the cosine measure. The second shows two different sequences,
whose effective output is 0.0. The Jaccard measure outputs the best result. In the third example the
Pearson measure gives the expected result. 

In the current version, we calculate the mean value of S(C)(Vs’, Vu’), S(J) (Vs’,Vu’), and S(P)(Vs’, Vu’).
For a particular measure between a virus signature and a suspicious binary file, let’s denote this

Figure 10: An example of realignment algorithm
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mean value as S(m)(Vs’i, Vu’), which stands for the similarity between virus signature I and suspicious
file.

Our similarity report is generated by calculating the S(m)(Vs’i, Vu’) value for every signature in
the signature database. The index of the largest entry in the similarity report indicates the most
possible virus the suspicious file intends to be. Let’s denote the index imax. By comparing this largest
entry with a threshold, we can make a decision: if the largest entry is higher than the threshold, then
the suspicious file is the virus in the signature database with the index imax; otherwise the suspicious
file is not a known virus (or perhaps a new virus that doesn’t yet have a signature in our database).
In our experiment, threshold .90 works quite well.

By utilizing the above algorithm we implemented our polymorphic virus scanner SAVE1 (Static
Analyzer for Vicious Executable). We also created another version’s scanner SAVE2. The major
difference between SAVE1 and SAVE2 is that they use the different signatures. SAVE1 uses the API
sequence of a Win32 PE as a signature. Meanwhile SAVE2 uses the imported API set as a signature.
The corresponding similarity measure methods are different too. SAVE1 uses sequence measure,
SAVE2 uses the set match. 

7. PERFORMANCE STUDY
Several recent Win32 viruses were used for performance evaluation: Mydoom, Blaster, Beagle,
Bika from Symantec company. For each virus we created a set of polymorphic versions by the
obfuscation techniques described in Section 3. For example, Mydoom V1 and Beagle V1 are
created by modifying data segment; Mydoom V2 and Beagle V2 are created by modifying control
flow; Bika V1 is created by inserting dead code. We then scan these polymorphic versions by using
eight different virus scanners and our new scanners. Table 2 shows the experimental results. As can
be seen from the last two columns, our scanners, SAVE1 and SAVE2, perform the most accurate
detection. 

We also considered a suite of benign PE files (All Win32 PE under the directories of ‘Windows’,
and ‘Program Files’). We executed SAVE1 and SAVE2 on these benign programs; our scanner
reported “negative” in all cases. 

In our example, no false positive was found, however, the sensitivity of the scanner is quite
different. The detection sensitivity of SAVE1 is better than SAVE2, shown in Figure 11. The
horizontal axis represents the file index. In this experiment we used more than three hundred benign
Win32 PE files, shown in the left side of the vertical line. And from left to right the file size
increases. We also used 15 versions’ of Mydooms by different obfuscated techniques, shown in the
right side of the vertical line. The detection outputs by SAVE2, shown in Figure 12(b), are scattered

√ indicates the best output, × indicates the false output, 
and ? indicates the acceptable but not the best output

Table 1: Mutual correction between measures
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much wider than that of SAVE1. It is obvious that SAVE1 is more effectively to distinguish benign
files from obfuscated malicious files. 

Since SAVE2 is much faster than SAVE1. The performance comparison is shown in Figure 12.
We used SAVE2 as a pre-scanner to perform extremely efficient batch scanning. For the files have
a highly suspicious output, we scan them by SAVE1 again to generate the highly confident output. 

N – Norton, M1 – McAfee UNIX Scanner, M2 – McAfee, D – Dr. Web, P – Panda, K – Kaspersky, F – F-Secure, A –
Anti Ghostbusters, S1 – NMT developed Static Analyzer for Vicious Executable, which uses the methods described in

Section 4. S1, S2 – NMT developed Static Analyzer for Vicious Executable, which uses the API bag as signature.

Table 2: Polymorphic Malware detection using different scanners 

(a) Detection outputs of SAVE1 against Mydoom (b) Detection outputs of SAVE2 against Mydoom
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Figure 11: Sensitivity comparison between SAVE1 and SAVE2
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We also compare our scanner with another static executable scanner, SAFE (Static Analyzer for
Executables), which was introduced by Christodorescu and Jha (2003), and was claimed to be able
to detect obfuscated versions of virus. We did experiments on an environment, Intel 1 GHz, 1 GB
of RAM plus MS Windows 2000, which is very similar to the environment (AMD Athlon 1GHz, 1
GB of RAM plus MS Windows 2000) described by Christodorescu and Jha (2003). We also ran our
scanner against the same executable codes in their experiments.

Figures 13 and 14 compare the performance between SAVE1 and SAFE. The higher curve
shows the total time of SAFE for checking four benign Win32 PE files, which are listed in the
bottom of the diagram. The corresponding performance of our detector, SAVE1, is shown in the
lower curve. As can be seen, SAVE1 is about one hundred times faster than SAFE for checking
middle size PE files. As shown in Figure 13, with respect to Win32 PE size, the detection time taken
by SAFE increases at a much higher rate than our detector. 
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Figure 12: Speed comparison between SAVE1 and
SAVE2. The experiment is performed on more than
three hundred PE files having the various sizes from

10K bytes to 10M bytes.

Figure 13: Performance comparison on four
executables. (The values near curves are detection

time, in millisecond)
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Figure 14: Detection time taken by SAFE increases in a much higher rate than that of SAVE with respect to size
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8. CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, a methodology for composing signatures of Win32 PE malicious codes is presented
aimed at supporting polymorphic malicious code detection. The key assumption is that to preserve
its functionality, a polymorphic malware should contain a sufficiently similar API calling sequence.
We described in detail the implementation of a PE scanner for creating API calling sequence as the
signature, and an algorithm for computing similarity measure for signature comparison.
Experiments (performed before May 2005) on a large set of polymorphic malware showed that our
scanner, SAVE, is accurate and efficient in detecting polymorphic malware. 

In the future, we hope to concentrate on the optimizations of the signature creation process.
Since not all the APIs are meaningful in profiling a malicious code, we plan to investigate
developing a new method to pick up the most important API calls as signature for the malicious
code. Using a smaller vector as a signature may significantly improve the overall performance. We
also plan to optimize the realignment algorithm, which is now a bottle neck of our algorithm.
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