
An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 419

has different meanings as E-Move Version I. First, we check the customer’s credit details and at
the end of the workflow, the customer is charged according to the actual rental and shipment
service. 

Company A provides the rental and shipment service. From the E-Move point of view, the
detailed transaction will be performed by Company A. The E-Move Company just needs to
synchronize the information provided and the results received. That means, in the E-Move
transaction architecture, we do not have to express the detailed rental and shipment transactions.
The following is the E-Move Version II transaction architecture. The bold architecture names are
reused from E-Move Version I.



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005420



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 421

Figure 8: E-Move Version II Transaction Architecture Diagram



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005422

6. RELATED RESEARCH WORK 
Related research work will be addressed along aspects as given by: i) transaction modeling, ii)
business process modeling and iii) BDL. 

In the field of transaction modeling, a number of approaches have been adopted in the literature.
For instance, dynamic transaction schema (Ngu, 1989), transaction interoperability (Tarr and
Sutton, 1993) and dependency rules (Gunthor, 1993) have been investigated in previous work. In
later research, transactional technologies were introduced into workflow management systems to
express business processes because of the lack of failure semantics and recovery features in these
systems (Alonso et al, 1996; Georgakopoulos et al, 1996; Chen and Dayal, 1996). With the dramatic
growth of the Internet, more and more issues are discussed about E-Commerce transactions
(Sandholm, 1997; Li et al, 2001). For example, in Nektarios and Christodoulakis (2002), a high-
level Unified Transaction Modeling Language is proposed recently to model complex web
transaction design. However, few transaction modeling techniques demonstrate very complex long
transactions which are more and more identified in real world and keep the modeling process
flexible and extensible in order to support existing and future transaction models. In addition, these
research works do not support verification and validation, which is required in the E-Commerce
context. Furthermore, they do not provide an executable framework for scenario-based checking.
These aspects motivated us to find a new approach, which can verify the transaction processes
before a complex E-Commerce system is built and this has led to the proposed transaction patterns
and architectures in this paper. It then becomes a good starting point if one first develops an
effective high-level modeling tool to facilitate future work. 

Recently, a rich set of notations, called the Business Process Modeling Notation (BPMN), has
been released recently by bpmi.org (BPMN, 2004), which acts as a standardized bridge for all
business users including business analysts, technical developers and business people to model from
internal business processes to B2B processes. Flowcharting technique is used in the Business
Process Diagram (BPD) in which graphical elements are categorized to enforce simplicity, but with
additional macro operations, complex system modeling can also be handled. In the complete set
BPD, an event, compensation and exception notations are included, as shown in Figure 9 (adapted
from White, 2000). The example models both a simple transaction and a complex long transaction,
which deals with a number of exceptions and compensation schedules among different business
entities. Compared with BPMN, realistic and complex E-Commerce transaction constraints can be
effectively captured by the transaction patterns and architectures. As mentioned in Section 1, our
approach overcomes the limitations of the lack of formal semantics in graphical approaches and
unmanageable complexity. In addition, we also provide a formal mechanism to verify complex
transactions. It shares common features with Architecture Description Languages, which mostly
focus on conceptual designs instead of real implementations. A more recent work (Glasser et al,
2004) stresses on aspects of executability and interoperability with the .NET language and we have
realized that connecting with successful software systems will offer visible and realistic benefits to
present E-Commerce systems. Although this is not the focus of this paper, a discussion has been
provided and a concrete implementation is being considered.

BDL was first proposed to describe the concurrent behavior of simple objects or a group of
objects (Bertrand and Augeraud, 1999), while complex E-Commerce transaction systems involve
workflows which are activity-based. When we try to use the BDL on the E-Commerce systems, this
inconsistency forced us to seek for support from the event semantics. We therefore extended the
BDL further. In fact, the entities in a multi-organizational environment can be repackaged as objects
and the activities, which then can be considered with event semantics. At least, the event semantics



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 423

is obvious at each level of transaction patterns and architectures. Consequently, existing verification
tools can be used to verify transaction systems or part of the systems. Furthermore, the extensions
to the BDL may lead to new effective verification or testing tools to be developed.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have described the syntax, semantics and usage of a Behavioural Description
Language (BDL) developed for modeling and verifying E-Commerce transaction processes. On the
basis of transaction models, we build the BDL notations to express E-Commerce transaction
processes. We also put forward the concept of transaction pattern and transaction architecture
which are the containers for BDL. The advantages of using BDL in E-Commerce systems are: i) it
can model real world, concurrent and complex business transactions, ii) its expressive feature, iii)
the model developed by BDL can be verified through existing verification tools and subtle errors
may be detected. Consequently, the reliability can be improved in the development of E-Commerce

Figure 9: BPMN Compensation Handling and Transactions



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005424

transactions. In other words, we introduced the modeling and verification power into the E-
Commerce applications to gain the benefits of flexibility, expressiveness and structure. 

The present work addresses issues in automation of transactions in E-Commerce also. We have
shown that complex long transactions, which exist in B2B, B2C and C2C can be modeled through
the BDL introduced in this paper. Due to the variety and complexity of an E-Commerce transaction
system, the development of an effective verification tool is being under consideration. Firstly, a GUI
visualization tool is very useful so that a complex transaction can be easily built, understood and
accepted. Further, a theorem prover or an equivalent system could be developed so that the BDL
notations and transaction architectures can verify the correct operation of the underlying E-
Commerce structure. Mapping to the standard Business Process Execution Language (BPEL),
which is currently considered as the most important execution language, is another beneficial
implementation. The XML-based BPEL provides event, fault and compensation handlers and the
reader can refer to BPEL for Web Services (2003) for further reading. We are also interested in
whether composite events can be used to give semantic and executable support to high-level
transaction architectures. The research on Complete Interaction Sequences (White et al, 2001;
White and Almezen, 2000) is also worthy of following up.

ACKNOWLEDGEMENT
We thank Professor Sastry of the University of Akron for his insightful comments, which improved
the quality of this paper.

REFERENCES
ADAM, N.R., GOGRAMAACI, O., GANGOPADHYAY, A. and YESHA, Y. (1999): Electric commerce technical,

business, and legal issues. New Jersey, Prentice Hall.
ALONSO, G., AGRAWAL, D., ABBADI, A. E., KAMATH, M., GUNTHOR, R. and MOHAN, C. (1996): Advanced

transaction models in workflow contexts. Proceedings of 12th International Conference on Data Engineering, New
Orleans, February. 574–581.

ALONSO, G. and MOHAN, C. (1997): Workflow management: The next generation of distributed processing tools,
Kluwer Academic Publishers.

BERNSTEIN, P. A., HADZILACOS V. and GOODMAN, N. (2004): Concurrency control and recovery in database
systems, Addison-Wesley Publishing Company Inc., 1989, Retrieved from http://research.microsoft.com/pubs/
ccontrol/, June.

BERTRAND, F. and AUGERAUD, M. (1999): BDL: A specialized language for per-object reactive control, IEEE
Transactions On Software Engineering, 25(3), May/June.

BPMN SPECIFICATION RELEASES: BPMN 1.0: May 3, (2004): Business Process Modeling Notation (BPMN),
Retrieved from http://www.bpmn.org/Documents/BPMN%20V1-0%20May%203%202004.pdf.

BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES Version 1.1, 05 May (2003): Retrieved from
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

BUSSLER, C. and JABLONSKI, S. (1994): An approach to integrate workflow modeling and organization modeling in an
enterprise, Enabling technologies: Infrastructure for collaborative enterprises. Proceedings, Third Workshop, 17–19
April, 81–95.

CARLSEN, S. (1998): Action Port Model: A mixed paradigm conceptual workflow modeling language, Cooperative
Information Systems, 1998. Proceedings. 3rd IFCIS International Conference, 20–22 Aug, 300–309.

CASATI, F., ILNICKI, S., JIN, L., KRISHNAMOORTHY, V. and SHAN, M. “eFlow : a platform for developing and
managing composite e-services”, retrieved from www.hpl.hp.com/techreports/2000/HPL-2000-36.pdf, May.

CASSEZ, F. and ROUX, O. (1995): Compilation of the electre reactive language into finite transition systems, Theoretical
Computer Science, 146, July.

CHAN, H., LEE, R. and DILLON, T. (2001): E-commerce fundamentals and applications. John Wiley & Sons.
CHEN, I. and DAYAL, U. (1996): A transactional nested process management system, Data Engineering, 1996.

Proceedings of the Twelfth International Conference, 26 Feb–1 March, 566–573.
COVES, C., CRESTANI, D. and PRUNET, F. (1998): Design and analysis of workflow processes with Petri nets, IEEE

International Conference, 1(11): 101–106.
EDELWEISS, N. and NICOLAO, M. (1998): Workflow modeling: exception and failure handling representation,

Computer Science, SCCC '98. XVIII International Conference of the Chilean Society, 9–14 Nov. 58–67.



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 425

GEORGAKOPOULOS, D., HORNICK, M.F and MANOLA, F. (1996): Customizing transaction models and mechanisms
in a programmable environment supporting reliable workflow automation, Knowledge and Data Engineering, IEEE
Transactions, Aug. 8(4):630–649.

GLASSER, U., GUREVICH, Y. and VEANES, M. (2004): Abstract communication model for distributed systems, IEEE
Trans. on Software Eng., July, 30(7): 458–472.

GRAY, J. and REUTER, A. (1993): Transaction processing: Concepts and techniques. Morgan Kaufmann, San Mateo, CA.
GUNTHOR, R. (1993): Extended transaction processing based on dependency rules, Research issues in data engineering,

Interoperability in Multidatabase Systems, Proceedings RIDE-IMS '93., Third International Workshop, 19–20 April
20–214.

HÄRDER, T. and REUTER, A. (1983): Principles of transaction oriented database recovery – a taxonomy, ACM Comput.
Surv. 15(4): 289–317.

HOARE, C. A. R. (1985): Communicating sequential processes, London: Prentice-Hall International, UK, LTD. 
KWAN, M.M. and BALASUBRAMANIAN, P.R. (1997): Dynamic workflow management: a framework for modeling

workflows, System Sciences, Proceedings of the Thirtieth Hawaii International Conference, 7–10 Jan. 4: 367–376.
LAWRENCE (Editor), WORKFLOW HANDBOOK (1997), Workflow management coalition. John Wiley and Sons, New

York.
LI, P., GOLUGURI, J., I-LING Y. and TAI, A. (2001): Multicriteria transaction for e-commerce applications, Computer

Software and Applications Conference. COMPSAC 2001. 25th Annual International , 8–12 Oct. 596–602.
LUCKHAM, D. C. and VERA, J. (1995): An event-based architecture definition language, IEEE transaction on software

engineering, 21(9), September.
NEKTARIOS, G. and CHRISTODOULAKIS, S. (2002): UTML: Unified transaction modeling language, Web Information

Systems Engineering. WISE 2002. Proceedings of the Third International Conference, 12–14 Dec. 115–126.
NGU, A.H.H. (1989): Conceptual transaction modeling; Knowledge and Data Engineering, IEEE Transactions, Dec, 1(4):

508–518.
NGU, A.H.H., DUONG, T. and SRINIVASAN, U. (1996): Modeling workflow using tasks and transactions, database and

expert systems applications, Proceedings., Seventh International Workshop, 9–10 Sept. 451–456.
ONLINE PAYMENT PROCESSING: Retrieved from “http://www.verisign.com/products/payment/processing.

html”, June.
ORFALI, R. and HARKEY, D. (1998): Client/server programming with Java and CORBA, second edition, John Wiley &

Sons, Inc., N.Y.
SANDHOLM, T.W. (1997): Unenforced E-commerce transactions, Internet Computing, IEEE , Nov–Dec. 1(6):47–54. 
TALPIN, J-P., BENVENISTE, A., CAILLAUD, B., JARD, C., BOUZIANE, Z. and CANON, H. (1998): BDL, a language

of distributed reactive objects, Object-oriented real-time distributed computing, 1998. (ISORC 98) Proceedings. First
International Symposium, 20–22 April, 196–205.

TARR, P. and SUTTON, S.M., Jr. (1993): Programming heterogeneous transactions for software development,
environments Software Engineering, Proceedings, 15th International Conference,17–21 May, 358–369.

US EMBASSY REPORT (2000): E-commerce statistics: Explanation and sources, http://www.usembassy.it/pdf/other/
RL31293.pdf.

VOGEL, A. and RANGARAO, M. (1999): Programming with enterprise JavaBeans, JTS, and OTS - Building distributed
transactions with Java and C++, John Wiley & Sons, Inc, ISBN 0-471-31972-4, 368, May.

WARNE, J. (1993): An extensible transaction framework: Technical overviewo, Chapter 2, Architecture Projects
Management Limited, October.

WHITE, S. A. (2000): BPMN Fundamentals, Retrieved from http://www.bpmn.org/Documents/BPMN Fundamentals.pdf.
WHITE, L. and ALMEZEN, H. (2000): Generating test cases for GUI responsibilities using complete interaction

sequences, Int. Conf. on Software Maintenance, San Jose CA, Oct 11–14, 110–121.
WHITE, L., ALMEZEN, H. and N. ALZEIDI, N. (2001): User-based testing of GUI sequences and their interactions,

accepted by the Int. Symp. on Software Reliability Eng., Nov. 27–30, in Hong Kong.
WHITELEY, D. (2000): E-commerce: Strategy, technologies and applications, ISBN 007 7095529, The McGraw-Hill

Companies.
YUHONG, Y. and BEJAN, A. (2001): Modeling workflow within distributed systems, Computer Supported Cooperative

Work in Design, The Sixth International Conference, 12–14 July, 433–4.
ZUR MUEHLEN, M. (2004): Transaction management (in WFM environments), Retrieved from http://www.wi.uni-

muenster.de/is/vorlesungen/WF/Winter2000/2001-02-05_Tran- saction_Management.pdf, May. 



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005426

APPENDIX: FEATURES OF TRANSACTION MODELS

A.1 ACID Transactions
As Bernstein et al (2004) pointed out, a transaction is a computation whose execution is constrained
by the fundamental properties of atomicity, consistency, independence, and durability (collectively
known as the ACID properties (Bernstein et al, 2004)). ACID transaction includes flat transaction,
chained transaction and nested transaction and these are briefly described below: 

A.1.1 Flat transaction
A flat transaction is one in which one of the operations in a tuple of operations fails. An example is
the debit/credit transaction where a debit operation is done but the credit operation crashes. Figure
A.1 (zur Muehlen, 2004) shows that, after the transaction begins, it is guaranteed to have a result,
namely, success or failure. This makes the system change from one state to another consistent state
and, in addition, makes the system more durable. The flat transaction is proven to be highly
effective as it has an excellent control over the short and concurrent database access, while not
losing strict consistency requirements. Although the flat transaction is not suitable to model
complicated business processes, surprisingly, most of the transactions are flat nowadays (Vogel and
Rangarao, 1999). 

A.1.2 Chained Transaction
A chained transaction is an evolution of the flat model, which addresses the business problem where
“save points” are needed during the execution of the transaction. Figure A.2 (zur Muehlen, 2004)
demonstrates the important fact that if there is a crash, the transaction which is being committed can
be aborted without the need to abort all of the committed jobs. That means that one need not have
to go back to the beginning of the transaction – unlike the flat transaction.

A.1.3 Nested Transaction
A nested transaction can have many sub-transactions within the main transaction; it is convenient
for modeling more complex business logic. Figure A.3 shows a transaction T with two sub-

Figure A.1: A Flat Transaction with a 
Feature of Immediate Aborts

Figure A.2: A Nested Transaction with Partial Aborts



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 427

transactions T1 and T2, with each having sub-transactions T11 & T12 and T21& T22 respectively.
The execution of committing T depends on whether all of the sub-transactions have completed.
There is a synchronization point before T commits to check the results of the sub-transactions. A
unit of transaction like T12 can be committed or aborted individually, however, the system will only
make T12 persist while all its parent transactions T1 and T commit. 

From Table A.1 we can see that if a parent transaction aborts, all of its committed children 
e.g., T21 and T22 will also be aborted. However, if a sub-transaction aborts, the parent may not be
aborted; instead, the parent can perform the following actions:

A. Re-try the sub-transaction and execute at least a minimum re-try number.
B. Prepare an alternative sub-transaction and execute. 

Compared with the flat transaction, the nested transaction has two major advantages: i) it can
recover from partial failure and ii) the sub-transactions can be executed concurrently.

A.1.4 Two Phase Commit Protocol for Distributed Transaction 
The two-phase commit protocol, usually referred as 2PC, is developed for distributed transaction in
which the update resources are located in different places. As an extension of flat ACID transaction,

Figure A.3: A Nested Transaction

Transaction Sub Transactions Alive Commit List Abort List

T T1,T2 Yes T1, T12 T11,T2

T1 T11,T12 Yes T1,T12 T11

T2 T21,T22 No (Aborted) T2

T11 No (Aborted) T11

T12 Yes T12

T21, T22 No (Parent Aborted) T21,T22

Table A.1: Nested Transaction Execution Information List of Figure A.3



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005428

2PC has to keep the atomicity property by committing all updates in different resource managers
together (Vogel and Rangarao, 1999). The transaction coordinator sends a “prepare-to-commit”
message in the first phase to all participating resource managers and requests them to reply. In the
second phase, the coordinator first collects the replies. If all of the resource managers are ready to
commit, then the coordinator will send the commit request to all resource managers. After sending
the replies to the coordinator, all distributed resource managers wait for the commit request and they
will commit together.

As shown in Figure A.4 (zur Muehlen, 2004), if one of the resource manager e.g., A fails, the
resource manger will abort locally and send a “Not Ready” reply to the coordinator. The coordinator
will send “Abort” request to all resource mangers which have replied “Ready”. 

Figure A.4: Two-phase Protocol for Distributed Transaction

Figure A.5: The Workflow for the Trip Booking Business Transaction

NB: The black circles and diamonds represent merge and decision-points respectively. As noted in the paper, the black
diamond notation ahs been introduced to strengthen the "rollback" features of E-Commerce transactions, viz., a transaction
will not be committed until it passes through the established guards.



An Event Algebra Based System for Verifying E-Commerce Transactions

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 429

In summary, the ACID transactions have the features of short duration and strict isolation.
However, in the business field, the ACID transactions may have problems to support workflow
based transactions. zur Muehlen (2004) expressed these problems using a trip-booking workflow
example where it is not possible to apply atomicity when the transaction includes calculating the
cost and sending the invoice. At the same time, it is almost impossible to preserve isolation when
preparing invoices for the customers (see Figure A.5) (zur Muehlen, 2004).

BIOGRAPHICAL NOTES
Renyi Zhao received his Bachelor degree from Harbin Institute of
Technology, China, in 1996 and his Master’s degree in Information
Technology from the University of Newcastle, Australia, in 2004. Currently
he is pursuing his PhD at the University of Newcastle, Australia, in the area
of event algebra and formal languages for mandatory access control design. 

Professor Lakshmi Narasimhan obtained his Bachelor’s degrees in Physics
and Electronics Engineering from the University of Madras and Indian
Institute of Science respectively. He also obtained his Master’s and PhD
degrees respectively from the Madras Institute of Technology and University
of Queensland, Australia. He worked at his alma mater in Australia as a
lecturer and senior lecturer and was also the Director of the PA3SE (Parallel
Algorithms, Architectures And Software Engineering) Research Laboratory.
In 1995 he moved to the Australian Defence and Science and Technology
Organisation (DSTO) as a Principal Research Scientist and was leading the
program on Information Management and Information Fusion. Later he
worked as a full professor at the Computer Science Department, University of
North Texas at Denton, USA. Currently he is the Professor and Chair in
Software Engineering at the University of Newcastle, Australia.

Professor Narasimhan has published over 120 papers in the areas of
computer architecture, parallel and distributed computing, software testing,
text and audio processing, E-Commerce, Software process, and information
management and fusion. His articles have appeared in archival journals such
as various IEEE Transactions and IEE Proceedings. Professor Narasimhan
was the founding chair of the IEEE Computer Society, Queensland Chapter
and initiated the International Conference series ICA3PP (IEEE
International Conference on Algorithms and Architectures) and acted as its
Inaugurating Chair. Currently his research interests are the areas of large-
scale system engineering, testing and visualization, Agent technology and
distributed object computing. He is a Senior Member of IEEE, ACM, ACS
and IEAust. 

Renyi Zhao

Lakshmi Narasimhan


