

	*� ��'���� ��" ���%�'��� �+�'�"� ? �@� '%� �0.?�.9A9

� !)���&'���! !��" ���#��$� ����-6�P5�-�F5P��3-�� P���
+�������� �P�'������ ��#�� �� ���$ �����
%������� ���	��� �P�@%%+A53
%������� ���	��� �P��%%A65
%������� ���	��� �P��	����� ������ ��� �>	�� ��������
%������� ���	��� �P������� ���	���� ��� ����	�����
%������� ���	��� �P��%�%P�F
%������� ���	��� �P�@%%+A53
%������� ���	��� �P�*���.�	�� �53
@������ ��� ��%%D65
%������� ���	��� �P����(�*������������ ����������� ��� �#��� ������ ����� ������ �
GO12!D53H
*���������� ����(������ �Q���$

�
�
�)
�6 �
�� �
�� �
)6 �
6� �
)6

��)

�F6

	�	�� ���/�B

4� %��!� ' � %&�)!�&�� �$�� ����9 ���� �=!-5

� �/� #� �%���'+��! � 5�

� ���&)%)&��/� #� �$�� ���&)"��!6 �C�! +' '+ ����(�%�� � ��

��!!�'=&��

� �	������ ���� ��������� �������� �������� � ���P���

� �	��=���P����� ��		����(��� ������������ �������� ��F3P�F6�

������ ���� ���������������

� ��%��)%���#��((��&)" �%�����(�%�� ��%�&%�+*� ��

� ����������� ��		����(��� ����� ���������� � �36P��)

�))�!! '+ ��- �� (! �$��� �%"���@(��%!� �F5

�#�&')�! � ' ����(�%��!, �8�����! �0N,�0L,�) � 53P�

��+���&) ��"���* ��$����)�!!�! � 5

�� ���	����������� ��� �,������ ��� ������� � ���P��3

�' ��'%��#�)% �' �%�����+�&�� '+ ��! '+ ��&) '%�!" � �F

�&!)&�

�''�&� ���� �= ��$����(�%�� ��) �')�, �8����� �D� 6�P)

��!%�&�&! &' ����(�%�� !�# ���+&� ��'$���&% �' � 6�

�&'#���9

.� �# '+ �&���)��� ����(�%�� ��*!%�� � 65P53

� ��* �C !!�)% �' � 5�P�

���(��� �C�! +' �&'#���'!%��)% �' � ��

���(�%�� ��&'+�&+�! � ��

���(�%�� �8 ! �' �;�� �A �!%�����!� � ��

���(�%�� :�# ��!! !%&')� �C�� '+ �%"���'$���&% �' � ��P�

�*!%��! �� $� ��*)��

���(�%��! �&'#��&'+�&+�! �;��"���* �&'#���&)%)� � 6�P�

C&%&������')&% �' ��*!%��! �&'#��"� � � ��FP�

���$���&')�!

C&%&�&!����)�� %*6 ��%&%�!�&'#����!(�)%! � 66

C�! +' ���%��&% �'6 ���%��&%�#�A���;� ��!%���# � ��3

�&*��%��! '+ �%"����P���� �C�! +' ��'� ��'��'% �

C*'&�)! ��$��� ((�� � 6�

+������#� ���������������� ��������(�� ��� ������ ��������� �)5P6�

���(P��������� ����$��"�

�����'%! ��$�A�')% �'&� ��&'+�&+�! � 6�

�����'%! ��$��%&% !%)&�����(�% '+ � 6�5

����##�# ����+�&�� '+ ��' ��#& � 6�6

����+�&(")! ��� � ��

A&!%���+�� %"�! �&'#�%"� ����(����'%&% �' ��' � ���

�(�) &� :�# ��&�&���� ����(�%��!

��������� �������� �!!!

The Australian Computer Journal, Volume 21, 1989

Fast Fourier transform on multiprocessor 13-18

architectures

Foundations of Programming Languages 87-8

Fractals Everywhere 162-3

FrameUP: A frames formalism for expert systems 33-40

Handbook of Advanced Semiconductor Technology 43-4

and Computer Systems

IBM's Local Area Networks: Power Networking and 164

Systems Connectivity

Interface logic programming 49-55

Interpolative hidden surface removal method for 61-IQ

polyhedra

KBESM-A pro log blackboard system 100-107

Key issues in information systems management: An 118-129

Australian perspective - 1988

Machine Vision - Algorithms, Architectures and 88-9

Systems

Memory and Storage 96

Modelling of Computer and Communications 41

Systems

MS-DOS Functions 162

Numerical Recipies in C, The Art of Scientific 139

Computing

Optical Computing: A Survey for Computer 42

Scientists

Organisational Decision Support Systems 90

Output Hardcopy Devices 92

Pascal-SC A Computer Language for Scientific 44-5

Computation

Pattern Recognition 87

People and Computers 44

Pooled Cross-Sectional and Time Series Data 8 6

Analysis

Portraits in Silicon 95

Programming in POP-11 92-3

Programming the 68000 45

Programming, the Impossible Challenge 139

Relative compromise of statistical databases 56-61

Remote Education and Informatics: Teleteaching 94

A scalable cache coherence mechanism using a 2-12

selectively clearable cache memory

Small Scale Bibliographic Databases 93

Software Engineering Principles and Methods 42

SPEX: A method for specifying the dynamics of 19-26

structured specifications including control

information

Statistical analysis of spherical data 42

Temporal logic and Z specifications 62-66

The 68000 Microprocessor 41

The architecture of PCM-1 71-78

The Computer in the Home: Its Challenge to 91

Education

The Computerised Society 96

The Penguin Dictionary of Computers 140

The RISC Style of architecture 97-99

Top-down Programming with ELAN 93-4

Utimate Computing: Biomolecular Consciousness 42-3

and NanoTechnology

Venn diagrams and SQL queries 27-32

What Every Engineer Should Know About Artificial 94

Intelligence

Xenix at Work 163

Continued overleaf ...

The Australian Computer Journal, Volume 21 1989

CONTRIBUTOR INDEX

Abramson, D.A. 2-12

Adamson, W.J. 46

Aitken, A. 42-3,87

Andrews, C 45,163

Baker-Finch, C.85,85-6

Beresford- 79-84

Smith, B.

Bergmann, N. 43-4,140

Berry, L.T.M. 41

Briggs, J.R. 13-18

Bushell, C. 42

Caelli, B. 89-90

Chenneau, C. 95-6

Choo, L. 88

Chubb, L. 93

Chubb, P. 41, 42

Coiera, E. 86-7

Connell, H. 44-5

Cottingham, 67-70

M.S.

Crawford, J. 87-8

Crossley, J.N 49-55,92

Douglas, J.B. 89

Duke, R. 62-66

Dwyer, B. 93-4

Eades, P. 162

Fletcher, R.L. 85

Fris, I. 43,139

Halpin, T.A. 27-32

Hicks, B. 162

Hiller, J. 90,95

Hirst S.C. 151-161

Hood S.T. 100-107

Howarth, B. 163-4

Jarvis, R.A. 41

Johnson, G. 42

Johnston, D. 41

Kim, M.H. 19-26

Korczak, J.J. 45-6

Kwon, Y.R. 19-26

Lim, P. 49-55

Lions, J. 90-1,92,95

Little S.E. 130-138

Margetson D.B.130-138

Mason K.P. 100-107

Miller, M. 56-61

Montgomery, 8 8

A.Y.

Patkin, M. 44

Pollard, J. 91

Ramamohanarao, 2-12

K.

Richardson, A. 86

Ross, M 2-12

Sale A.H.J, 13-18,71-

78,97-99

Schroder, H. 79-84

Seberry, J. 56-61

Shannon, G. 88-9

Shaw, E. 41

Shuley, N. 139,162-3

Simsion G.C. 108-117

Smith, B.W. 94

Smith, G. 62-66

Stuckey, P. 49-55

Tsang, C.P. 164

Watson R.T. 118-129

Watts, A. 139

White, L.B. 86

Wild, D. 164

Williams, G.J. 33-40

Williamson, R 94

Wilson, C.G. 92-3,96

Wise M.J. 141-150

SYMBOUC REGULAR ALGEBRA

free language because such a system can be trans
formed into productions for a context-free grammar,
where the constants play the role of terminals, and
the variables play the role of non-terminals. In fact,
the system of §1 generates a regular language. It is
instructive to compare the layout of our equations
with the ‘metalinguistic formulae’ for ALGOL num
bers contained in Section 2.5 of the Revised report
on ALGOL 60 (Naur, 1963, pp.1-20). The language
of S.R.A. employs an algebraic notation deliberately
chosen to emphasise analogies with classical algebra;
for example we use "=" for of the report, "+" for

and allow arbitrary nesting of factors, terms and
expressions on the right-hand side of equations. This
notation has much in common with extended B.N.F.
as exemplified in Backhouse (1979, §3.5.2), where the
right-hand sides are effectively arbitrary regular ex
pressions.

An advantage of extending our expression space to
systems of regular equations, rather than simply
modelling regular expressions, is the clarity of no
tation and brevity introduced by substitution through
the use of variables. For instance, defining the lang
uage implied by the system of equations of §1 with
out variables leads to the cumbersome regular
expression:

(1 +p+m)(1 +f+dd*f+t(1 +p+m)+
(1 +f+dd*f)dd*t(1 +p+m))dd*

where for conciseness we have abbreviated "+" to p,
to m, "10" to t and "." to f. Although this ex

pression is acceptable input to S.R.A., it nevertheless
requires documentation to be intelligible. In S.R.A.,
variables can be sequences (of characters) of arbitrary
length, so equations can be used to meaningfully
label subexpressions. However, systems of equations
do introduce difficulties for the implementor with
respect to certain transformations, in particular sim
plification, as we shall see in §4.

Let us enrich the language to include some addi
tional regular functions (Table 2, §3). The postfix
power operator preceded by A furnishes certain sub
sets of Kleene closure. In particular, EAn (n^O) is the
«-fold concatenation of E, and EAm_n (0sm<n) is
short for EAm+EAm+l+...EAn. Prefix functions are
uniformly preceded by #; an example of a useful
function is the successor function #S which when
applied to a left-hand side variable yields the corre
sponding right-hand side expression, thus providing a
convenient shorthand for large expressions. For in
stance, referring to the system of §1, #S[E] is a short
hand for "10"[l+"+"+"-"]I. Note that the infix
extension of intersection and complementation of
regular expressions are not (as yet) implemented.

Sets, while also merged with expression syntax are

principally used as arguments to commands which
focus upon a chosen subset of represented Expres
sions. Several functions return sets of regular expres
sions, for example, the zero argument functions #V
and #C. Many regular functions admit natural exten
sions of both domain and range to encompass sets.
This leads to semantics of increased scope and com
putational power. An instance is the auxiliary regular
function #S mentioned above. Regarding #S[V] as the
successor of V, we extend the notion of successor to
any argument as follows. First, we define the succes
sor of a constant to be the empty set []; the successor
of an alternation, concatenation or power expression
is the set of components of its argument; finally we
define the successor of a set of expressions to be set
of successors of its elements. Continuing the example
in the preceding paragraph, #S[#S[E]] which may be
abbreviated to #SA2[E], returns the set
["10",1I]. The expression #S[#V] is the set
of right-hand sides of the current system of equa
tions. Note also the potential use of #S as a type
transfer function as in #S[1+"+"+"-"] which is the
set [1,

Several Boolean operations on sets are available in
S.R.A.. Union is indicated by enclosing arguments in
square brackets; for example, [#V,#C] denotes the set
of identifiers. Set difference and intersection are ob
tained respectively using the binary operators - and
* (not preceded by A). In the sphere of language
theory we can find the set of recursive non-terminals
defined by a system with goal symbol N with the
command write [#R[N]*#V], First, #R[N] computes
the set of all recursive expressions derived from N
which is subsequently intersected with the set of all
variables (#V). For example, in §1 we might have
defined an Integer recursively by the equation
I =Id+d; then #R[N] is the set [I,Id+d,Id] so
[#R[N]*#V] evaluates to [I].

As a matter of notational convenience, we decree
that singleton sets can be optionally notated without
brackets so that in this case sets are given the same
syntactic status as regular factors. Thus, the com
mand eqn [#SA*[N]] defining an ALGOL number
can be more succinctly written eqn #SA*N; provided
we know the number of arguments taken by the var
ious functions and commands, there is a gain in clar
ity and brevity by omitting redundant brackets.
Actually, in order to simplify the input language of
S.R.A., all sets, singleton and otherwise are assigned
the syntactic status of regular factors; there is no
ambiguity in the semantics, since context determines
whether a set or factor is implied. There is however
an important logical distinction between [E,F] and
[E+F], less so between the set [E] and factor [E] both
of which can be abbreviated to E.

THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989 153

SYMBOLIC REGULAR ALGEBRA

3 Transformation Space
Transformations over an expression space can be
viewed as procedures taking zero or more arguments
and returning or supplying results, where arguments
and results belong to various components or domains
of the expression space. Transformations can be
broadly classified according to result type into com
mands and functions. At the top level, commands
supply results by modifying the environment of the
system, both internal and output (in the same way a
procedure of a Pascal program can alter its global
environment). They are reserved for transformations
whose results are not sets or expressions, and thus
cannot be used directly as input to other commands
or expressions. Functions, which can be used orthog
onally, supply results subsequently used in other
larger Expressions, including commands. In the fol
lowing tables listing some of the currently available
commands and functions, the domain ‘set of regular
expressions’ is abbreviated to Set, ‘regular expression’
to R.Expn, ‘regular factor’ to Fact and a number e
N+ to Num.

TABLE 1: Command Transformations

CMD ARG(S) RESULT DESCRIPTION

clean Set Set of eqns Geans equation system leaving only systcm(s)
implied by set of goals in arg.

gen Fact,
Num, Set Binary machine Generate machine corresponding to argx w.r.t

constants arg^, state limit = arg2 (optional).

read Set of eqns Set of eqns Append new eqns to system, redefine old
variables.

write R.Expn Output Writes argument to output.

eqn Set Output Write eqns whose variables occur in arg.

clr Set of eqns Reinitialise or clear system; Constants 0,1 only
remain in main table.

Sensible defaults apply to many of the functions
listed in Table 2 in which the factor 1 is substituted
for a missing argument. For instance, #G without
arguments generates the set of goals for the whole
system, and E + with a missing second argument is
the expression E + 1. This latter abbreviation nicely
coincides with the notation often used in extended
B.N.F. mentioned in §2.

As a useful extension, the postfix functions can
themselves be applied to the functions #P, #p, #S and
#T with the obvious meanings. Thus #SA0-3 delivers
all successor expressions of its argument to a depth of
3 in the implied expression tree. Of importance also
is the reflexive and transitive closure of #T (namely
#TA*) which is the first action taken by the transfor
mation clean (see (Backhouse, 1979, §1.4) and (Aho
& Ullman, 1972, §4.4)). Beginning at the leaves of
the expression trees with argument #C + 1, #TA*
searches backward for all those expressions which
terminate in constants. Those nodes not reached are
eliminated. Clean subsequently applies #SA* to find

TABLE 2: Function Transformations

FUNCTION ARG(S) RESULT DESCRIPTION
Svmb Name

#C Constant Set Set of constants of system.

#V Variables Set Set of variables of system.

#R Recursive set Set Set Set of recursive expressions in arg.

#C Goals Set Set Set of goals of system implied by
variables in arg, default whole system.

. #P Direct
Predecessor Set Set Set of all Expressions containing arg

Selective
Predecessor Set Set Set of all Expressions whose successors

are contained in arg

#s Successor Set Set Set of successors

#T Terminating
Predecessor Set Set Set of all Expressions terminating to

strings in arg

#sop Sum of
Products Fact R.Expn Returns sum of products form of arg

#0 Output Fact R.Expn Returns 1 if 1 € arg, 0 otherwise

#D Derivative Fact .Fact R.Expn Returns derivate of arg x w.r.t arg2.

+ Alternation R.Expn,Term R.Expn Basic regular operation

t.i Union Set, Set Set Set Union

- Concatenation Term .Fact Term Basic regular operation

- Difference Set,Set Set Set Difference

• Intersection Set,Set Set Set intersection (only)

*• Kleene
C'isure Fact Fact Basic regular operation

1 ositive
Closure Fact Fact arg^-arg arg*

-
Power Fact, Num Fact arglAarg2 ^argl“’ti

Power range Fact, Num, Num Fact argl*arg2,arg3=argx'*1'*'ti - £ arg\

those nodes reachable from the specified argument,
usually the goal symbol.

4 Simplification
Simplification in S.R.A. is an implicit transformation
which is not specified notationally in the user lang
uage; hence its absence from the preceding tables.
Instead it is applied automatically to all expressions
and subexpressions input to the system or generated
during the course of a calculation. As a simple exam
ple, consider the expression ((c+l)*+bb+S)+c*c* +1
which could be input to S.R.A. using the command,

read Simp = [[c+l]A*+b bA+S] +l+cA*cA*;
Since, during the parsing of this command, every
subexpression is simplified immediately upon gener
ation, the expression reduces to the form b2-™S+c*.
The command eqn Simp would output this as:

Simp = cA*+bA2 _ .. S
It is well known that the problem of determining

the equivalence of languages generated by arbitrary
context-free grammars (and thus systems of regular
equations) is undecidable. Consequently, there can
be no general purpose decision procedure to simplify
an arbitrary S.R.A. Expression and we cannot hope to
find a canonical form for regular equation sys
tems. Indeed, there is no decision procedure which

154 THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989

SYMBOLIC REGULAR ALGEBRA

produces a regular expression for a system of equa
tions supposed to define a regular language (Conway,
1971, ch.4, p.128). This is part of the accepted price
paid for modelling equational systems rather than
regular expressions.

S.R.A. actually accepts a trade-off of increased size
of expression space for a weakened notion of canon
ical form. Instead of always successfully mapping
equivalent expressions to the same class in the parti
tion of the expression space, we are now only able to
identify those expressions whose equivalence is deriv
able under the following list of simplification trans
formations. The result is a somewhat finer partition
of the expression space, with several classes taking
the place of the one previously.

Table 3: Simplification Transformations

Tl. E+F <-> F + E

T3. (E + F)+G O £ + (F + G)

T5. E1 <-> E

T7. £0 9 0

T9. E + E <-> E

Til. 0d-b 1 if a = 0

0 otherwise

T12a.£°-° = £° 1

T12C.E1-1 =E1 <-> E

T13a.Ea-b + Ec-d

n £+o f
T4. (EF)G E(FG)

T6. 1E <-> E

T8. OE 0

T10. la-b <H> 1

T12b. E0-1 <-> 1+ E

whereS = {a..6} u {c..d} provided

(a-l..b+l) n {c..d) *0

T13b.Ea-b + Fc-d <-> £a-b + F{c-i]-{a"b) providedE^F

T14. Ea-bEc- <-> Ea+c-b+d

T15. (Ea-b)c-d £acJ!d provided (c=d) ora£c(b-a)+1

T16. E v provided v = E is a current equation of the system.

In the above list, E,F and G stand for arbitrary
regular expressions, a, b, c, d any numbers from N+
and v is any variable. Transformations Tl - T9 are
taken directly from standard (axiomatic) properties
of the regular algebra of events (Salomaa, 1966,
pp. 158-169) while T10 - T15 arise from the defini
tion of the power operator defined in §2. It is also
easily verified that these transformations themselves
imply several standard properties of Kleene closure
as special cases, suggesting that Ea-b is a ‘weakened’
canonical form for regular expressions of a single
variable. However, note that T15 breaks down when
applied to (En)* (=(E"-n)°-~) whenever n >1, because
the result is not a continuous range of powers.
Conway (1971, ch.3, p37) gives a ‘real’ canonical
form for all regular expressions over a single variable
which if implemented would also account for proper
ties involving expressions of the form {En)*. Anyway,
handling the one variable case is hardly worthwhile

in isolation, when multi-variable regular expressions
have a canonical form in binary machines.

It is of interest to note that binary machine gener
ation is the only guaranteed successful simplification
procedure available to us for arbitrary regular expres
sions since no finite system of axioms for the algebra
over two or more variables is complete {ibid, ch.13).
Thus adding more rules to our list of simplification
transformations, while making simplification more
reliable cannot ever guarantee absolute success even
for this limited expression space. The more rules
added to the list, though, the more likely we are of
generating the optimal (minimal state) binary ma
chine directly as a result of the differentiation process
to be discussed shortly. On the other hand, too many
rules tend to slow the generation process of which
simplification is a vital part. A good balance is
achieved in S.R.A., because the simplification rules
which are handled, have been hand-tailored for speed
and efficiency. Thus, whatever machine is produced
from a given expression (optimal or otherwise), will
be generated quickly. If it must be guaranteed opti
mal, which is often not necessary, then this can be
checked by an algorithm to identify states after the
generation process has terminated (Hopcroft, 1971,
pp. 189-96).

Some notable omissions from the list of simplifica
tion transformations are the distributive laws and
Arden’s lemma (Arden, 1960, pp. 1-35). These trans
formations have the potential to consume large
amounts of computing resource and it is difficult to
find canonical forms for these transformations which
avoid excessive backtracking or searching. For in
stance, expanding an expression into a sum of prod
ucts form, necessary to test equality by the
distributive laws, could use large amounts of space
and time which is identical to the problem of inter
mediate expression swell for classical algebra sys
tems. On the other hand, the transformations listed
in Table 3 all take little time to assess and effect, and
a ‘weakened’ canonical form is readily available.

We have not yet indicated how simplification is
achieved using the transformations or indeed how a
simplified expression appears. Given a set of trans
formations T, we need to first define a unique rep
resentative Expression (or weakened canonical form)
for each equivalence class with respect to T and then
show how an Expression can be mapped onto this
form. The simplification philosophy of S.R.A chooses
canonical forms from among the smallest Expressions
of equivalence classes. This seems reasonable both
from the point of view of memory utilisation and
user comprehension.

We now give a brief top level description of how
simplification is integrated into the transformation

THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989 155

SYMBOLIC REGULAR ALGEBRA

space of S.R.A.. Simplification aims at maintaining
the system in a state satisfying the condition that
every represented expression is unique and in (weak
ened) canonical form (the smallest possible with re
spect to Tl - T16). Thus no two distinct regular
expressions represented at any one time by the
system can be equated using T1 - T16 unless explic
itly by some equation (T16). This is a fixed pre and
post-condition for any transformation. Whenever a
transformation creates a new expression, the result is
first simplified and the simplified form checked
against all existing expressions by searching. If the
search succeeds, the old canonical expression found
in the search is returned, otherwise the simplified
expression is entered into the system and returned.
This process is not unlike storing and retrieving iden
tifiers from a symbol table in which they are uniquely
represented. In fact, the method of searching for ex
pressions in S.R.A. has much in common with the
method of hashing often used in symbol tables; the
main difference is that our hashing function is based
on set operations rather than an integer function.

5 Binary Machines and Differentiation
Another extension to the expression space of S.R.A.
is the representation of the binary machine (Conway,
1971, ch.l). A convenient pictorial representation of
the binary machine is the state diagram, a graph
whose nodes represent states and labelled directed
edges, the transition function. We can additionally
label nodes of the state diagram indicating the initial
state with -A and states with output 1 (final states)
with a double circle. For example, the set of words
constituting the event ALGOL number has one poss
ible state diagram as set out in Figure 1, with the
states numbered from 1 to 8:

Figure 1

In S.R.A., a binary machine is output in the form
of a tableau of the state transition diagram where
rows represent states and columns inputs. Thus a
machine with state set O and input set / is output as
a \Q\x\I\ matrix with entry in row q and column /, the

transition from state q on input i. States are num
bered 1,-lQl where 1 stands for the initial state, and
output for each state is listed in the final column.
The inputs, which may be arbitrary expressions, are
labelled 1,...,|/| and listed above the tableau. As an
example, the equations in §1 were input to S.R.A..
Using the command gen N (meaning generate (if
possible) the machine for N), S.R.A. produced the
tableau corresponding to the state diagram in Figure
1:

iV 2"-" 3 "10" 4d 5".”

1 2 3 4 5

1. 2 2 3 4 5 0
2. 0 0 3 4 5 0
3. 6 6 0 7 0 0
4. 0 0 3 4 5 1

5. 0 0 0 8 0 0
6. 0 0 0 7 0 0
7. 0 0 0 7 0 1
8. 0 0 3 8 0 1

Figure 2

Note that binary machines are part of the output
expression space, but have an implicit internal rep
resentation as vectors of derivate regular expressions.
They cannot (as yet) be read as input or transformed
like regular expressions and equation systems — an
area for future development.

The transformation corresponding to binary ma
chines is differentiation, the process of generating de
rivatives. In contrast to simplification, differentiation
is not at all sensitive to the scope of the expression
space and a decision procedure can always be found.
The original account of differentiation, is due to
Brzozowski (1964, pp.481-494). His expression space
is basically the restricted language of regular expres
sions over constants whose interpretation is in terms
of events, i.e. sets of sequences. We begin with an
account of the theory as it applies to Brzozowski’s
restricted expression space and subsequently extend
this to cope with systems of equations as used by
S.R.A..

Consider the usual regular algebraic expressions
defined over the set S with constants A = {c0,C[,...}
and introduce two new functions 0:S -A {0,1} and
D.SxA -A S (in Table 2 these are #0 and #D resp.).
Letting E, F £ S, x, y £ A and subscripting the
A-argument of D, O and D are defined recursively as
follows:

156 THE AUSTRALIAN COMPUTER JOURNAL. VOL 21, No 3, NOVEMBER 1989

SYMBOUC REGULAR ALGEBRA

Table 4

0[0] = 0 AdO] = 0
0[1] = 1 Add = 0
OCx] = 0 AdU = 1 if x =y

= 0 otherwise
0[E+F] = 0[£]+0[F] Ad£+F] = DX[E]+DX[F]
0[EF] = O[£]0[F] Ad£F] = DX[E1F + 0[E]DXIF]
0[£*] = 1 Ad£*l = Dx[E]E*

In the alternative account employing a set theoretic
model the definitions for O and D can be stated much
more simply and the properties listed in Table 4 de
rived as a consequence. Thus, now regarding E as an
event we define

0[E\ = 1 if 1 e E i.e. 1 <£
= 0 otherwise.

DX[E\ = {w | x w E E] where x E A, wEA*
In this context 0[E\ is known as the constant part or
output of E. The event DX[E\, variously notated ||,
Ex, is the derivative or derivate of E with respect to
x, thus named because of the similarity between the
definitions given in Table 4 and the classical algebraic
rules for differentiation.

With these preliminaries we can now give the con
nection between differentiation and binary machines.
Let M be any binary machine with states , s2,...,
and transition function t. For any state .y, define E(s,)
to be the event taking s(- to states of output 1. We say
that E(s,) is the event corresponding to state s,- of M
and that E(sj) is the event represented by the ma
chine M as a whole. It follows that the x-successor of
Si corresponds to precisely the same event as the de
rivative of E(Si) with respect to x. There is also a
result stating that the output of the event correspond
ing to Sj is the same as the output of sf of the ma
chine. Hence the binary machine corresponding to an
arbitrary event E has states which are the word de
rivatives of E, say Ey = E, E2, E3,..., and transition
function given by t{Eb x) = DX[E,] and output func
tion given by o(E,) = 0{E].

This provides an effective algorithm for binary ma
chine generation; starting from E, representing the
initial state, generate all the word derivatives of E by
repeated constant differentiation at the same time
identifying indistinguishable states. By definition,
states are indistinguishable if and only if the events
representing them are equal, implying for the algo
rithm that each new derivative generated must be
checked for equality against the previously generated
derivatives, before including it as a new state. This is
the process of simplification previously discussed.

What are some of the characteristics of a machine
M thus generated from a regular expression El

1. Every state of M is accessible (i.e. no useless
states). This is clear since all derivatives are

word derivatives of E.
2. M is deterministic. The algorithm constructs the

deterministic machine directly unlike the more
‘obvious’ algorithm commonly described in el
ementary textbooks. It thus provides the ‘non-
standard’ converse to Kleene’s fundamental
theorem of regular algebra (Kleene, 1956, pp.3-
42).

3. Assuming the simplification process identifies all
equivalent derivatives, the resulting machine will
be minimal, and thus by 1) above, optimal.

4. The number of states of M is finite, in other
words the algorithm always terminates.
Brzozowski(1964, pp.492-94) proves that this
holds even if M is not optimal and simplification
fails.

Implied in Table 4 was the fact that the derivative
of a regular expression is itself a regular expression,
or in language theoretic terms, event derivatives are
themselves events. It remains now to extend differen
tiation to systems of regular equations for which
there is an analogous result.

Consider the system vj = El(vl, v2,...vn) i = 1,...« in
which the right-hand sides are regular functions of
the n variables v,, v2,...v,; and constants of
A = {a, Using the usual rules of differentiating
constant regular expressions (Table 4), we can differ
entiate the above system, with respect tox£d yield
ing a new system,

n
DJy,] =ZDx[vk]Gki(vJ,v2,...v„)+Fi{vl,v2,...vll) for some G and F.

k=1[
This is a system of left-linear equations in the n
variables Z)v[v,] which can be abbreviated in matrix
form as follows:

D = D G + F ...(1)
\xn 1 xn nxn 1 xn

Now assuming an event algebra, and that matrices
over events obey the same laws as events, the above
system can be solved using Arden’s lemma (assuming
I+G4G), yielding the closed form solution,

D = F G* ...(2)
This implies that the derivative of a system of equa
tions in variables v1; v2,...v„ is itself a system of equa
tions which can be expressed as regular functions of
the same variables and constants. In language theo
retic terms this means that the derivative of a
context-free language is itself context-free.

The unsolved form 1) has the advantage of being
fast and direct to compute. It involves only the addi
tional rule for differentiating variables £>A.[v,] = v/v,
adding a new variable v* to the system for each
x-derivative of variable v,. This is not only costly in
terms of space but leaves a rather severe legacy of left

THE AUSTRALIAN COMPUTER JOURNAL. VOL 21, No 3, NOVEMBER 1989 157

SYMBOUC REGULAR ALGEBRA

recursion tending to further escalate the problem for
future derivatives. At the other extreme, although the
closed form solution D = F G* introduces no new
variables, calculating G* for large n can be extremely
time consuming and further, the elements of G* may
themselves be exorbitantly long and thus costly to
simplify and store.

In line with the simplification philosophy of S.R.A.
we seek now to answer the question: ‘Can we arrive
at a reasonable form for the derivative of an arbitrary
set of equations, limiting the number of new vari
ables, avoiding left recursion and explicit solutions?’.

The answer is clear in the case of non-left recursive
equation systems. Instead of creating a new variable
v/* for each variable v, differentiated with respect to
x, we instead differentiate the right-hand side of v,-. In
other words, the rule Dx[Vj]=ViX is replaced with the
formula Dx[v^ = £>*[£,(v,, v2,...)] where vrEt(vu
v2,...vn) is an equation of the system. This substitu
tion rule is viable, since by the absence of left recur
sion v, cannot be encountered again before £>A.[v,] is
completely evaluated so the differentiation process is
guaranteed to terminate. Systems of equation amen
able to this treatment include the useful subclass of
systems used to define large regular expressions in
hierarchical piece-meal fashion (for example the
system in §1).

Now consider the case of an arbitrary system of
equations v;- = E(vu v2...v„). Using the rule Dx[v] =
Dx[Ej(vu v2...vj] for all non-left recursive variables
but otherwise using -Dv[v;] = vyY results in a system of
m equations corresponding to the (say) m left-
recursive variables which we write now in matrix
form

D = D G + F
Ixm 1 xm mxm 1 xm

chine corresponding to v, in a small three variable
system:

Vi = V^+V^+Vj

v2 = Vib+v2d+v3(b+v3) /
v3 =/

First, differentiating with respect to / we obtain the
reduced left recursive system:

Ki, /2] = [/i, /2]
a b
cd + [1, b+v3]

Solving for v/with F = [1, b + v3],HA h2 and

G =
a b
cd we have,

/, + F Ht = hi + (b + v3)h2

with auxiliary equations
rAii 'a b' 'hp rn
A = cd A + 0

hi = a hi + b h2 + 1
h2 = c hi + dh2

This solution is much simpler and faster to com
pute than the closed form solution = (1+ bd*c +
fd*c)(a + bd*c)* Further, since the solution is now
not left recursive we can easily continue the differen
tiation process to obtain the labelled machine below
for v,.

Figure 3

Note that any non-left recursive variables have effec
tively been relegated to F. Since we want to avoid left
recursion, we write the solution above in the right
recursive form,

D = F H where H = G H + I
1 xm Ixm mxm mxm mxm mxm mxm

and / is the identity matrix. If we only want to dif
ferentiate the single variable v,-, this information can
be extracted from the i-th component of the above
equations viz:

v*, = F Hj where //, = G HA + /,
Ixm mxl mx 1 mxm mxi mx 1

where Ht and IA are the i-th column vectors of H
mx 1 mxl mxm

and / respectively.
mxm

To make these ideas clearer, we generate the ma-

6 Applications
In this section, we mention a few examples of appli
cations of S.R.A. to some familiar computer science
disciplines — lexical analysis, parsing, pattern
matching, program design and testing. The list is
representative, but not exhaustive; indeed the reader
may well envisage other applications in his area of
interest, further attesting the fundamental position of
regular algebra to computer science.

Since S.R.A. models the algebra of events, the
most immediate application is to formal language
theory, in particular parsing and lexical analysis. The
command gen which generates a recogniser for a
regular system can be adapted to perform more
varied tasks. For example, a machine for finding
instances of a pattern P in a text sequence w can be
synthesised by generating a machine for I*P, where /
is the underlying alphabet of w. We can incorporate

158 THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989

SYMBOLIC REGULAR ALGEBRA

actions in P by suffixing (or prefixing) the pattern
elements of P with distinguished ‘action’ or output
constants e O where O D/=0. The corresponding ma
chine then contains O-transitions which are to be
interpreted as actions; alternatively, a simple trans
formation of M associates these output transitions
with states to produce a Moore machine (Moore,
1956), the formal equivalent of a lexical analyser. As
a simple example, the pattern

. Int = d "N:=val(d)"[d"N:=10*N+val(d)"]A*
with actions enclosed in quotes, interprets a sequence
of digits as an integer returning the value in integer
variable N. The function val returns the value of the
digit just read from input. Using gen, S.R.A. yields
the machine with state diagram —

N:=10*N + val(d)

which reduces to the Moore machine —
N:=val(d) N:=10*N +val(d)

We mention that a variant of gen is capable of pro
ducing the latter machine directly.

S.R.A. can be used with little modification to per
form the function of a parser generator. Backhouse
(79, ch.4) shows how to convert a system of equations
G into one defining the (regular) left-contexts of non
terminals of G, whose machine, the characteristic
machine of G, is the finite state machine of the LR
parser for G. Actually, we have implemented another
variation of gen, which bypasses the translation de
fining left-contexts. This technique, whose descrip
tion is beyond the scope of this paper, effectively
separates a system of equations into regular and non
regular components, often reducing the machinery
required for the stack. It is frequently the case that
the non-regular component of a language is quite
small. An extreme case is when a system, such as that
defining ALGOL numbers in §1 defines a regular
language, in which case the stack can be eliminated.
The finite state machine recogniser produced by
S.R.A. has 8 states and is in fact optimal. Contrast
this with the more complex machine produced by the
LR technique; an equivalent specification input to
YACC (Johnson, 1975) yielded an automaton of 18
states utilising a stack. The ability of S.R.A. to pro
duce machines which are optimal or near optimal is
a consequence of the symbolic algebra approach cou
pled with a powerful simplification capability. A po
tential application of S.R.A. is to the solution of
problems of this type where minimal resources are

available, for example, in constructing recognisers
and parsers for microcomputers or imbedded sys
tems.
A system of regular equations can be used to rep
resent the hierarchical design of programs. The basic
control structures of sequence, selection and repe
tition correspond in S.R.A. to the regular operations,
respectively concatenation, alternation and closure,
while the hierarchical structure is reflected in the
system of defining equations. Not only can the con
trol structure of programs be represented in this way,
but also the data structure. Consider, for example, a
transaction file held by a company recording infor
mation about customers’ subscriptions to its maga
zines called say A, B, and C. The structure of this
data at the top level might be represented in Pascal
like notation as follows,

subscription = record
customer : cust-info;
magazine : subs-info

end;
transactions = file of subscription

indicating that the transaction file is composed of
repeated records, each a sequence of two compo
nents. We can represent the same information as the
system of equations —

transactions = subscription^*
subscription = cust-info subs-info

Continuing the hierarchical design, we could decom
pose cust-info and subs-info:

cust-info = record
id : integer;
name : string;
address : address_type;:

end;
subs_type = (new, renew, suspend, cancel);
subs-info = record

magclass : (A, B, C);
case subs : subs_type of
new : (dateto : date);
renew : (renewto : date);
suspend : (from, to : date);
cancel: (refund : boolean;amt :

value)
end;

leading to the additional equations —
cust-info = id name address
subs-info = magclass [new + renew + suspend +

cancel]
new = dateto
renew = renewto
suspend = from to
cancel = refund amt

THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989 159

SYMBOLIC REGULAR ALGEBRA

Note the use of alternation in the definition of
subs-info representing the choice of data recording
the type of subscription. Also the order of defining
equations is immaterial to the specification, unlike
the frequent programming language restriction where
objects must be defined before they are referenced.

The control structures of programs can also be
expressed as a system of equations in which the vari
ables document the subprocedures of the program
like boxes in Jackson tree-structure diagrams (Jack-
son, 1975). Both Jackson and Warnier-Orr (Warnier,
1981, pp.11-38) emphasise design methodologies in
which the control structures are fashioned from data
structures pertaining to either input or output. As an
illustration, consider designing a program to update a
master file (mf), using a transaction file (tf) in the
above format, producing a new master (nf), all files
being sorted in order of customer. At the top level we
might have the equations:

prog = init process-custA* report
init = "reset(tf)" "reset(mf)" "rewrite(nf)"
report = subs-A subs_B subs-C {details of sub

scriptions to each magazine}
process-cust = insert-new + update + copy

The last equation states that processing a customer
for the new master file requires one of three actions:
inserting a new record corresponding to a new cus
tomer, updating an existing record corresponding to a
change in subscription or copying across an existing
record from the old master unmodified. The specifi
cation of a program in this way is not limited to
actions alone; we can incorporate tests which control
sequences of actions. For example, the alternation in
process_cust depends upon the relative values of
tfA.id and mfA.id - the current customers keys ap
pearing on input, as well as eof(tf) and eof(mf). Thus,
we might refine process_cust as follows:

process-cust = ["tfA.id<mfA.id" + "eof(mf)"]
insert-new +

"tfA.id=mfA.id" update +
["tfA.id>mfA.id" + "eof(tf)"] copy

The constants insert-new, update and copy could be
further revised, and this process continued until the
required detail is reached.

A machine corresponding to such a system of
equations determines the set of all execution se
quences of a program. If tests are included in the
specification, the tables produced by gen can be inter
preted as program flowcharts showing graphically the
execution sequences and the underlying control logic.
As an aid to debugging, it is possible to devise sets of
test data from these tables that trace all possible exe
cution paths at least once or loop any fixed number of
times. Also, since many commands, including gen,

take arguments determining which variables are to be
regarded as constants, S.R.A. can focus on any sub
system of equations. This is an advantage when
handling very large systems.
7 Conclusion
We have presented the program S.R.A. for perform
ing symbolic regular algebra. It is seen to be a versa
tile tool with applications in several areas of
computer science and related disciplines. Part of this
versatility derives from an algebraic user language
coupled with a consistent interpretation-free no
tation. We also emphasise that the program handles
arbitrary equation systems, in particular systems
which are left recursive. Being an ongoing project, we
expect a further expansion of applications as the ex
pression and transformation spaces are enlarged. In
the near future we hope to extend the operator class
to include intersection and complement and a facility
to input and manipulate a variety of automata in
cluding Mealy and Moore machines.
BIBLIOGRAPHY
1 AHO, A.V., and ULLMAN, J.D. (1972): The Theory of Parsing,

Translation and Compiling: Volume 1, Parsing, Prentice-Hall,
Englewood Cliffs, New Jersey.

2 ARDEN, D.N. (1960): "Delayed logic and finite state machines."
In Theory of Computing Machine Design, U. of Michigan Press,
Ann Arbor, pp. 1-35.

3 BACKHOUSE, R.C. (1979): Syntax of Programming Languages
Theory and Practice, Prentice-Hall, Englewood Cliffs, New
Jersey.

4 BRZOZOWSKI, J.A. (1964: "Derivatives of regular expres
sions." JACM, pp.481-494.

5 CONWAY, J.H. (1971):Regidar Algebra and Finite Machines,
Chapters 3, 4, 12, and 13, Chapman and Hall, London.

6 HIRST S.C. (1986): Symbolic Regular Algebra, M.Sc. Thesis,
University of Sydney.

7 HOPCROFT, J.E. (1971): "An n log n algorithm for minimizing
the states in a finite automation." The Theory of Machines and
Computations (Z. Kohavi, ed.), Academic Press, New York, pp.
189-196.

8 HOPCROFT, J.E., and Ullman, J.D. (1979): Introduction to Au
tomata Theory, Languages and Computation, Addison-Wesley,
Reading, Massachusetts.

9 JACKSON, M.A. (1975): Principles of Program Design, Academic
Press, New York.

10 JOHNSON, S.C. (1975): "Yacc — yet another compiler com
piler." Computing Science Technical Report 32, AT&T Bell Lab
oratories, Murray Hill, New Jersey.

11 KLEENE, S.C. (1956): "Representation of events in nerve nets
and finite automata." Automata Studies (C.E. Shannon and J.
McCarthy, ed.), Princeton Univ. Press, Princeton, New Jersey,
pp. 3-42.

12 NAUR, P. (ed)(1963): "Revised report on the algorithmic lang
uage ALGOL 60" Comm. ACM 6, pp. 1-20. Also in The Com
puter Journal, 5, pp. 349-367, 1963; Numerische Mathematik,4,
pp. 420-452.

13 PETRICK, S.R. (ed) (1971): Proceedings of the Second Sympo
sium on Symbolic and Algebraic Manipulation, (Los Angeles,
1971). A.C.M., New York.

14 SALOMAA, A. (1966): "Two complete axiom systems for the
algebra of regular events." JACM, 13, pp. 158-69.

15 WARNIER, J.D. (1981): Logical Construction of Systems, Van
Nostrand Reinhold, New York.

160 THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989

SYMBOLIC REGULAR ALGEBRA

ACKNOWLEDGEMENTS
I wish to thank Greg Butler and Jeff Kingston for
their thoughtful comments regarding the layout of
this paper, and Pauline Rimmer and Mark Terry for
assistance in typing the manuscript. I also acknow
ledge partial support from the Basser Foundation for
Information Technology.

BIOGRAPHICAL NOTE
Stephen Hirst is currently researching in the field of Symbolic
Regular Algebra at the Basser Department of Computer
Science, University of Sydney. Other interests include algo
rithm design and analysis, pattern matching and recognition,
natural language processing and other areas of symbolic
algebra.

THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989 161

BOOK REVIEWS Editor: Dr Chris Andrews

DUCE, D.A. & JANCENE, P. (ed). (1988): Eurographics 88, North
Holland, 511 plus colour illustrations pp., $US 118.50.

This book is the proceedings of EUROGRAPHICS 88, the ninth
annual conference of the European Association for Computer
Graphics, held in Nice, France, from September 12 to 16 1988. It
contain 41 submitted papers, plus summaries of 3 invited lectures.
The topics range over the broad spectrum of research in Computer
Graphics.

Recent advances in the popular areas are well represented, with papers
on standards, solid modelling, stochastic modelling, graphical
data structures, architecture (including parallel architecture), graph
ics algorithms, applications to curve and surface generation, anima
tion, CAD, light models and editors. These papers give a good feel
for the state of the art of classical Computer Graphics.

However, it is particularly interesting to see some novel work, in
dicative of the fact that other areas of Computer Science are
beginning to make an impact on Computer Graphics research. The
prime examples of this are in the Fundamentals section. P. Bau
mann, in A Formal Specification of a Boundary Representation,
presents a formal abstract data type methodology for specifying op
erations on the boundaries of solids. Effectively, Baumann is apply
ing Software Engineering research of the 1970’s to Computer
Graphics. L.A, Pienda, (A Compositional Semantics for Graphics),
extends classical Theoretical Computer Science in a method to . as
sign meaning to graphical functions.

Other papers apply some techniques normally used in AI Graphics.
For example An Expert System for Polyhedral Modelling, (P & D
Martin), presents a system for implicity defining solids by describing
their desired properties.

P. Eades
University of Queensland

BARON, N.S.(1986): Computer Languages, Penguin Books,
419pp., $29.95 (paperback).

Naomi Baron is a linguist. As such she has looked at the range of
computer languages that besiege us in much the same way that an
anthropologist might investigate the customs of a newly discovered
tribe. That is to say, she reports accurately what is there, but does
not always seem to appreciate the purpose of the object in the same
way that a practitioner would. On occasions she is so taken up by
the interesting trivia that she misses the big scene.

The subtitle of this book says A guide for the perplexed, and the
introduction claims

This is a book about the conceptional underpinnings and em
pirical diversity of computer languages. It is written for the
educated reader, including computer novice and programmer
alike.

It becomes clear that the main thrust of the book is toward the
current generation of microcomputer users and the software avail
able to that market. It also becomes apparent that the author may
have had experience with Pascal, LISP, and PROLOG but not
much direct contact with the more traditional languages. In cover
age and definitive explanation this book falls far short of the level
set by the now somewhat dated Tower of Babel book by Sammet.
However, for someone seeking to understand the flavour of a range
of computer languages it is an interesting volume. If you are seri
ously trying to choose a language for an application, it may provide
a starting point, but I am not so sure.

The book divides into 4 main parts:

1. An overview of how computer languages qualify for their
description as language and an attempt to make a clas
sification in various dimensions. The main distinction is
on the basis of organising principle where the range
covers: imperative/functional/object-oriented/FORTH/
logic/query. These are sub-catagorised on the basis of
being procedural, of being extensible and on the level to
which they distinguish program and data.

2. The main catalogue of languages (some 300 pages) covers
Ada, ALGOL, APL, Assembly, BASIC, C, COBOL,

FORTH, FORTRAN, Intellect, LISP, Logo, micro-
PROLOG, Modula-2, Pascal, PILOT, PL/I, PRO
LOG, QBE, SIMULA, Smalltalk and SNOBOL.

For each language there is a tabulated profile detail
ing the language’s general structure, its target users, a
little historic background and its special characteristics.
The main part of the description has a regular layout
and deals in turn with the language’s development his
tory, its philosophy of use and features, its evolution
and changes, its likely future role and details of
reference material and (microcomputer) suppliers of
software.

Most languages are illustrated with some snippet of
code, but this is often uncharacteristic or even syntacti
cally flawed.

3. A brief discussion of likely directions for computer lan
guage development and use.

4. An appendix giving very brief notes (about half a page
each) on 17 other relatively obscure languages.

This book was written in 1983-84 and originally published in the
USA in 1986. The review edition (printed in Great Britain) was
published in 1988. For a book dealing with the volatile field that is
microcomputer software, this is a long lead time. Just to take an
example: Baron decries Assembler for being untyped. Yet the move
ment to quite strong typing has been most noticeable in the area of
microcomputer assemblers for several years. Another instance: the
growth of more modern functional languages like HOPE and Mi
randa has seen the development of useful microcomputer implemen
tations, yet these go unnoted. In many cases it seems that the
author has relied heavily on advisors in forming her opinions. It is
a pity that in a book oriented towards microcomputer users, there
is no recognition of the role of spreadsheets or of the common da
tabase systems.

References.

SAMMET, J. E. (1969): Programming Languages: History and
Fundamentals, Prentice Hall.

Brian Hicks
University of Queensland

BARNSLEY, M (1988): Fractals Everywhere, Academic Press, 394pp.,
$US 39.95 (Hardback).

The notions of fractal geometry have captured the imagination of
mathematicians since its inception in the early ’80s when Mandel
brot published his book that first described these wonderful trans
formations. Since then fractals have become somewhat of a buzz
word in the popular scientific press. One of the reasons for the in
creasing interest in this subject is that there seems to be no limit to
the number of applications for fractal geometry. It is timely
therefore that a text which delves into the mathematical aspects of
fractals has appeared for the somewhat more than casually interest
ed.

The central theme of the book is based upon a course in fractal
geometry which has been running in the School of Mathematics at
the Georgia Institute of Technology over the past few years. Al
though the course is open to all students who have completed two
years of calculus, the material in the book is extensive enough to
challenge most post-graduate students. The framework of the book
is essentially mathematical. The introductory chapters establish the
rudiments of topological spaces upon which most of the material is
based. The framework of metric spaces is adopted here for reasons
of rigour and accessibility. Notions of completeness, compactness,
connected sets, convergence and other basic concepts are clearly
explained and the reader who has a background in functional analy
sis will appreciate the illuminating and thought-provoking examples
that are especially suited to illustrating the theory.

The concepts involving transformations on metric spaces are
treated in Chapter Three with particular attention to affine and

;•162 THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989

BOOK REVIEWS

Moebius transformations. The metric space within which fractals
may be explored is defined carefully and is subsequently followed
by the contraction mapping principle through which it is explained
that fractals are fixed points of certain transformations. The gener
ation of fractals is shown to be accomplished by the application of
simple transformations on simple spaces. Next the inverse problem
is considered : Given a fractal defined on a compact subset, how
does one find a fractal approximation to it? The Collage theorem
shows us how. Chapter Four is devoted to the dynamics of fractals,
in particular the idea of addresses and orbits are introduced. The
concept of a dynamic system associated with an iterated function
system is then considered and the reader is able to appreciate the
complexity and beauty of available orbits. Since one is especially
interested in the geometry of sets in the way they look when they
are represented by pictures the further addition of motion truly
bring about the idea of fractal growth. Chapter Five and subse
quent chapters are more a collection of special topics on fractals
containing information on fractal dimension, fractal interpolation,
and Julia sets, the latter of which is applied to biological modelling.
Finally, Chapter Nine is an introduction to measure theory as ap
plied to fractals and the reader is shown how measure theory may
be applied to diverse everyday engineering and science based appli
cations.

Overall the text is extremely well presented. Two series of colour
plates of fractal images, extensive exercises and examples to test
ones knowledge of the foregoing theory, and algorithms for the
generation of fractals on the computer, together make the text well
worth the $40 investment. A word of warning however to the casual
reader : This text is not so much a how to book but rather a succint
mathematical explanation of how fractal geometry is able to give
precise models of physical structures of seemingly complicated natu
rally occuring phenomena. However, this text may be regarded as
being essential to the library of anyone considering an in-depth
istudy of fractals.

Nicholas Shuley
University of Queensland

WOODCOCK, J., & HALVORSON, M. (1986): Xenix at Work, Micro
soft Press, 420pp., $38.99.

DUNCAN, R. (1988): MS-DOS Functions, Microsoft Press, 122pp„
$8.95.

A large number of books on many popular operating systems, and
indeed on many other complex pieces of software, have recently
come our way, all of them referring to the ubiquitous microcompu
ter. The IBM-PC with its derivatives and clones has become the lat
est most widely used toy (even rivalling the VCR and CD) in the
home and small business. That there is sufficient market for the
commercial press to produce such books (of which the above are
examples) in a pseudo-textbook format attests the penetration of
the software into the market. Perhaps also its complexity. Maybe
though, just lack of market sophistication.

Recently the writer has been besieged by examples of this sort of
book, and to be honest, has found them difficult to deal with. They
don’t really represent learned works on the science of computing.
Yet they represent useful works for the large number of individuals
working with microcomputer systems, and thus require some sort of
appraisal. But in my mind remains a niggling question. By accept
ing a number of these books, are we pandering to the lowest com
mon denominator of computer thought in this country typified by
the hobby market, rather than leading the race to enhance the
standing and training of true computing professionals in the na
tion? The hobby market, and here I also include those in business
who are strictly users of pre-packaged systems, are important for
many reasons. But are they the province of the ACJ? I’m not sure
if there is one dogmatic answer to that question but I have my sus
picions as to the general answer. Nevertheless I have given in and
provide a brief resume of two of the current offerings to come my
way!

In approaching a review one thing immediately becomes obvious.
These books are largely compilations of reference material, albeit

annotated in the case of ‘Xenix at Work’ which is also a tutorial
guide. And in each case the books fulfil their stated functions quite
adequately. Whether they are the best books for your purposes,
dear readers, will largely depend on your own delicate sensibilities,
specific needs, likings in style and so on.

‘MS-DOS Functions’ is a cheap readily accessible guide to the
MSDOS INTs - almost a reference card. It is comprehensive, acces
sible, useful, and quite bald. It is reference only and not teaching -
but makes no claim to be anything else. It does not cover BIOS
calls.

‘C Language Interfaces’ is similar. For the C-programmer it rep
resents probably the most comprehensive and useful compilation of
C functions for System V. For the serious C programmer, especially
the systems programmer, it is a must. Descriptions of functions and
their usages are good and the established programmer will turn to
them often. It is not cheap, but in today’s terms the price is prob
ably typical. It is part of a wider AT&T UNIX library which
appears well worth a second look.

‘Xenix at Work’ is a little different. It is a beginner’s introduc
tion to working with Xenix and a large range of its utilities. It cov
ers shell usage, through shell script programming, utility usage, to
system management. It is tutorial in character, and successfully so.
It is not the last word in detail, but prepares the reader for the next
step of detail quite readily.

So there it is. If one of these is in your area of interest, then it is
well worth perusing for personal evaluation. Over to you.

Chris Andrews
The Wesley Hospital, Brisbane

MORAES, L.F.M., de SOUZA e SILVA, E., and SOARES, L.F.G.
(eds): (1987): Data Communication System and Their Perfor
mance, North-Holland, Amsterdam, xvi 529pp., US115.75.

This book is the Proceedings of the Third IFIP TC 6/WG 7.3 In
ternational Conference on Data Communiation Systems and Their
Performance, held in Rio de Janeiro, Brazil, 22-25 June, 1987.

There are 36 papers from 12 sessions. The session titles are: Lo
cal area networks (two sessions); Packet network analysis; Data net
works application and practices; Packet radio networks;
Metropolitan area networks; ISDN protocols and services; Multiple
access; Queuing analysis; Distributed processing; Network modell
ing, design and analysis; and Performance evaluation.

The papers cover a broad spectrum from details of implementa
tions, to theoretical analyses. As the editors say in their preface,
‘The purpose of the conference was to provide a forum for profes
sionals in the fields of data communications systems and
performance evaluation to debate and exchange information.’

Two examples of the spread of papers. Laborie and Huitema in
their paper An X.400 service for Aristotle: the French research net
work describe the decisions made and implementation details of set
ting up a mail system to run under Unix and use X.400 services.
This describes in some detail how interfaces were required to other
protocol layers. The main conclusion of the paper is that X.400 was
demonstrated to be a reality.

At another level Houstis, in her paper ‘Distributed Processing
Performance Evaluation’ describes a performance evaluation
scheme for multiprocessor networks which incorporates considera
tion of communications costs and processing costs. A distributed
processing problem is assumed to be broken up into a (large) num
ber of modules, each with a processing time, a memory require
ment, and a communications requirement with other modules.
These relationships form an annotated graph, which is then mapped
onto the (assumed smaller) graph representing the processors and
communications network of the distributed processing system, so as
to minimize total elapsed time (including queueing for communica
tions access) for problem solution. Several interprocessor communi
cations networks were considered. The problem of assigning
processes to processors has been shown to be NP-complete, but
heuristics were derived which provided near-optimal solutions in lin
ear time.

It can be seen that the range of material is large, and the book
should have interest for several groups of people. It is well pro-

THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989 163

BOOK REVIEWS

duced (all the papers are quite legible) but the high price probably
means that it will grace more library shelves than private ones.

Bruce Ho worth
University of Technology, Sydney

SCHWADERER, W.D. (1989): IBM’s Local Area Networks: Power Net
working and Systems Connectivity, Van Nostrand Reinhardt, New
York, 294pp., $72.50.

David Schwaderer is a prolific author in the data communications
field. The first time I took note of the author was in an article
about RS-232 in the PC World magazine. There, as in his latest
book, he managed to convey communications concepts in an effort
less manner. In his present employment the author is supervising
the development of high-performance LAN connectivity products
within IBM’s Enterprise Systems Group and this book can therefore
be seen as the practitioner’s bible as far as IBM’s LAN offerings
are concerned.

The book comes in seven sections, which roughly consist of an
introduction to LANs and how to select one, the devices, cables
and topologies in LANs, IBM token-ring hardware, PC network
broadband hardware, IBM PC network baseband hardware, IBM
LAN software and custom broadband networks. The seven sections
with a total of 20 chapters are followed by twelve appendices. The
appendices deal with addresses of American component vendors,
component summaries, protocol, cable, and jumper details and
DOS 3.1 File-sharing modes. The bibliography contains mainly the
relevant IBM technical reference manuals and their order numbers,
and is followed by a glossary and an index.

The book is full of handy tips for the installation of IBM LAN
hardware including cabling, connectors, and maximum cable
lengths. The emphasis is on the practical aspects of installing sys
tems. To give an idea how some of the material is presented, the
author explains a broadband network in terms of a sprinkler system and
then draws the parallels between the two systems.

The only minor flaw in the book would be the American bias in
the equipment mentioned; I doubt whether some of the connectors,
for instance, would be available in this country.

Despite the steep price of $72.50 for 294 pages this book is re
commended reading for communications engineers and consultants, .
whose clients are not only interested in PC LANs, but also need
broadband solutions to handle the combination of data communica
tions, telephone, video, fire alarm, security, public address, energy
management and other future systems.

Dominic Wild
Perth Technical College

MIKLOSKO, J., VAJTERSIC, M., VRTO, I., & KLETTE,
R.(1989): Fast Algorithms and their Implementation on
Specialized Parallel Computers, VEDA and Elsevier Sci
ence Publishers, North-Holland, Amsterdam, 261pp.,
SUS79.00.

This is a monograph about recent advances in the design of fast
algorithms on specialized computation architecture. As the title sug

gests these algorithms are only for specialized machines, that is, un
der usual situations these are not implementable by the user on con
ventional machines or general purpose super-computers (ie. CRAY,
CDC, Fujitsu etc). These algorithms are for specialized
architectures such as parallel associative processors, systolic arrays,
dedicated pipe lines and data flow machines. Hence this book
would be extremely valuable for the design of hardware based al
gorithms and VLSI. For countries with the capability to design and
fabricate VLSI, these types of algorithms are particularly useful as
they enable the design of dedicated chips for special applications
which include low level vision, specialized search machines, data
compression, encryption, signal processing, video processing, com
munications, as well as components of logic based computers.

This is a unique book which presents many algorithms in a coher
ent manner. As all these algorithms are machine architecture depen
dent, it is impossible to explain them in terms of traditional
programming languages. The authors overcome this by using many
diagrams and pseudo-code. Furthermore formal argument is used to
calculate various complexities of the algorithms. Many references
are given, but there is no reference which is later than 1985. This is
possibly due to the lapse of a few years between the original publi
cation and the current English translation. The target audience for
this book is final year or post-graduate students in Electrical Engi
neering or Computer Science. It is also a useful reference for re
searchers, especially designers of custom VLSIs.

After a brief introduction and classification of the various
methods and principles in the first chapter, the second chapter gives
many examples of fast algorithms for associative processors. These
include pattern matching, simple matrix operations, sorting, Fourier
Transforming, image processing, solving linear equations, and ei
genvalue problems. Chapter 3 is devoted to systolic algorithms.
Again many algorithms are given including well known systolic ma
trix algorithms, and graph algorithms. There is also an introduction
to the methods for calculating complexity bounds for systolic algor
ithms. In chapter four, the design of pipeline processors are given
with examples in real machines such as the STAR 100 and CRAY-
1. This is followed by the application of pipelining to matrix opera
tions again. Chapter five describes a proposal by the authors for a
VLSI computer for solving a set of linear equations. A very
detailed algorithm is given. This highlights the research of the au
thors. The last chapter is entirely on the method of evaluating com
plexities in the algorithms.

This monograph is technically sound. As the area is still under
intense research, one cannot expect the book to cover all aspects of
current research. While this book is a good reference and review of
algorithms, it does not provide methodology for the user to design
new algorithms. One other comment is that this book attempts to
cover too large an area and may not have given each type of archi
tecture a fair description. The main contribution of this book is the
relatively coherent way of viewing these architectures and
algorithms, as well as being a general introduction and survey. As
all these algorithms are for specialized processors, very few of them
are actually implemented in a real machine.

C P Tsang
University of Western Australia

164 THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 3, NOVEMBER 1989

NEWS BRIEFS
“News Briefs from the Computer Worlds"is a regular
feature which covers local and overseas develop
ments in the computer industry including new pro
ducts, and other topical events of interest.

WORKSTATIONS AND PCs: THE
COMPUTING-POWER EXPLOSION

The product lines of PC manufacturers
almost routinely include systems equipped
with a 486 processor. These products are now
rivaling each other, especially in the area of
processing speed, which is measured in meg
ahertz (MHz). A super-modern 486 should
have a clock pulse frequency of at least 25
MHz, but 33 MHz is even better.

A similar situation has developed in the
workstation market. The first computers
featuring a 64080 processor and a clock fre
quency of 50 MHz have already been
announced. Power ranges are being achieved
which approach those of the traditional min
icomputer market. These systems are already
capable of 27 million instructions per second
(MIPS) and more.

In the high-end sector of traditional com
puters based on an Intel 80x86 processor,
there is hardly any difference in power com
pared to the low-end workstations, which
feature a Motorola 680x0. The range of
available standard software is also almost
identical for both system generations. In the
CIM sector, many CAD packages are availa
ble which run under both MS-DOS and
UNIX. In the field of operating systems, par
ticularly for personal computers, OS/2 is now
experiencing difficulties. A selection of pro
grams under this operating systems will not
be available until autumn.

The genuine differences between PCs and
workstations no longer lie in the operating
system because workstations are inherently
capable of dealing with UNIX and the power
ful PCs have been able to do so for quite some
time. The difference here lies in the processor
technology. In the workstation sector, sys
tems based on RISC technology are catch
ing up more and more. This technology,
which has been available for about three
years, simply makes it possible for computers
to work faster. RISC processors are responsi
ble for a performance explosion, especially in
the case of workstations. Workstations
became considerably faster
due to the technology used-fewer commands
integrated on a single processor. Further
more, prices have been dropping for the past
few months. Workstations are now available
for less than 20,000 Deutsche marks. In the
low-end sector, computers based on RISC
technology are even expected to go for below
10,000 marks by the end of the year.

Both workstations and personal computers
have proved successful in production applica
tions. Non-intelligent PDA systems used

strictly for data acquisition via barcode or
magnetic card are almost a thing of the past.
Master computers are almost always 386
PCs or powerful workstations. Because most
systems used in production applications are
now integrated in networks, be it via MAP
(Manufacturing Automation Protocol) or
Ethernet, the exchange of data between PCs
and UNIX-based workstations is also standard
ized.

The performance explosion experienced
by both computer generations during the last
few months was more than urgently neces
sary. Without exception, application pack
ages are now equipped with a graphical user
interface, either Windows or OSF/Motif.

Just managing these user interfaces
requires a large main memory and hard-disk
storage capacity. The computing speed of the
processor must also be larger for modern
applications because the user interfaces
require increased computing power.

The performance explosion which was
accompanied by a drastic drop in prices can
be observed at SYSTEC 90, to be held in
Munich from 22-26 October. A great deal of
attention will also be devoted to the graphical
user interfaces, on PCs and workstations
alike, in the halls of the Munich Trade Fair
Centre.

FACULTY OF INFORMATICS
ESTABLISHED AT WOLLONGONG

The new Department of Informatics at the
University of Wollongong embraces the
departments of Computer Science and Elec
trical and Computer Engineering, as well as
the Department of Mathematics.

In past months, both the telecommunica
tions and the computing sides of informatics
have had a substantial fillip in Wollongong.

In addition to a telecommunications soft
ware centre for the Corporate Consumer Div
ision of Telecom Australia, the Nortel Tech
nology Centre for Northern Telecom — a
Canadian-based international company —
has been set up in the University’s Technol
ogy Centre.

Associated with the new faculty are the
University’s Automation and Engineering
Applications Centre, the Centre for Informa
tion Technology and the research programs
in Engineering, Knowledge-based Informa
tion Systems and Industrial Mathematics and
Applied Statistics.

In addition, there are individuals with
international reputations in areas as diverse
as Image Processing, Oceanography and
Logic.

Students will have available all the subjects
previously provided by the three departments
in the Faculties of Mathematical Sciences
and Engineering.

Among the degrees to be offered are
Bachelor of Mathematics, Bachelor of Engi
neering (Electrical and Computer Engineer
ing specialties) and Bachelor of Information
Technology and Communicatioins.

The last is managed by a special unit within
the Faculty and involves a study of informa
tion technology as well as its social content.
The Faculty will be considering the forma
tion of new courses at undergraduate and
graduate levels.

SHARE TRADING ENTERS THE
SATELLITE AGE AND CUTS
ITS TELECOM BILL

Fibre optic cable, satellite, high speed mic
rowave and sophisticated computerised mes
sage switching equipment all play a part in
one of Australia’a largest communications
networks which the Australian Stock
Exchange Limited (ASX) is introducing.

The ASX officially commissioned its
Backbone Network, one of the largest and
most reliable communications networks in
Australia.

Announcing that transfer of operations to
the newly established national network was
successfully underway, ASX Group Manag
ing Director, Mr Gavin Campbell, said the
Backbone Network now links all mainland
State capitals using Telecom’s Megalink ser
vice which primarily deploys fibre optic cable
capable of transmitting vast quantities of data
at far higher speeds and with greater reliabil
ity than was possible using copper wire.

“The network is designed to allow trading
and other support services to continue unin
terrupted if a disaster was to put any one of
the capital city trading centres out of action
or if one of the links between capital cities is
broken.

“An attraction of the Megalink service it its
ability to provide alternate pathways for all
land lines in the network. In addition, in the
rare event these are cut by flood, earthquake
or other unexpected disruptions, Sydney,
Melbourne, Brisbane, Adelaide and Perth can
switch automatically to Aussat satellite
communications,” Mr Campbell said.

“The system will reduce our existing run
ning cost by approximately $400,000 a year
and provides up to seven times the present
capacity and increased reliability.

“The ASX is a distributed Exchange, pro
viding services in six State capital cities
across a continent. That makes us unique, and
underlines the tremendous importance of
high capacity, reliable, communications.
Modern communications allows ASX to
deliver a national market to every broker in
those cities and, through them to their clients.
Our competition, Exchanges in other coun
tries, do not provide such a service. Each is
focussed on one city,” he said.

PRELIMINARY CALL FOR PARTICIPATION

The 7th IEEE Conference on Artificial Intelligence Applications
Miami Fontainbleau Hotel, Miami Beach, Florida, 24-28 February, 1991

The conference is devoted to the application of artificial intel
ligence techniques to real-world problems. Two kinds of papers
are appropriate: case studies of knowledge-based applications
that solve significant problems and stimulate the development of
useful techniques, and papers on AI techniques and principles that
underline knowledge-based systems, and in turn, enable more
ambitious real-world applicatioins. This conference provides a
forum for such synergy between applications and AI techniques.
Papers describing significant unpublished results are solicited
along three tracks:
— “Scientific/Engineering” Applications Track. Contributions

stemming from the general area of industrial and scientific
applicatiions.

— “Business/Decision Support” Applications Track. Contri
butions stemming from the general area of decision support
applications in business, government, law, etc.
Papers in these two application tracks must: (1) Justify the
use of the AI technique, based on the problem definition and an
analysis of the application’s requirements; (2) Explain how AI
technology was used to solve a significant problem: (3) Des
cribe the status of the implementation; (4) Evaluate both the
effectivness of the implementation and the technique used.
Short papers describing systems in use (up to 1,000 words,
extended abstract) will also be accepted for presentation in
these application tracks.

— “Enabling Technology” Track. Contributions focusing on
techniques and principles that facilitate the development of
practical knowledge based systems that can be scaled to
handle increasing problem complexity. Topics include, but
are not limited to: knowledge representation, reasoning,
search, knowledge acquisition, learning, constraint prog
ramming, planning, validation and verification, project man
agement, natural language processing, speech, intelligent
interfaces, integration, problem-solving architectures, pro
gramming environments and general tools.

Papers should be limited to 5000 words. Papers significantly
longer than this will not be reviewed. The first page of the paper
must contain the following information (where applicable) in the
order shown:
— Title
— Author’s name and affiliation (specify student status).
— Contact information (name, postal address, phone and email

address).
— Abstract: A 200 word abstract that includes a clear statement

describing the paper’s original contributions and what new
lesson is imparted.

— AI topic: One or more terms describing the relevant AI areas,
e.g. knowledge acquisition, explanation, diagnosis, etc.

— Domain area: One or more terms describing the problem
domain area, e.g., mechanical design, factory scheduling,
education, medicine, etc. Do NOT specify the track.

— Language/Tool: Underlying programming languages, sys
tems and tools used.

— Status: Development and deployment status, as appropriate.
— Effort: Person-years of effort put into developing the partic

ular aspects of the project being described.
— Impact: A 20 word description of estimated or measured

(specify) benefit of the application developed.
Each paper accepted for publication will be allotted seven pages
in the conference proceedings. The best papers accepted in the
two applications tracks will be considered for a special issue of
IEEE EXPERT to appear late in 1991. Application has been
made to reserve a special issue of Transactions on Knowledge and
Data Engineering (TKDE) for publication of the best papers in the

enabling technologies track. IBM will sponsor an award of
$1,500 for the best student paper at the conference.
In addition to papers, we will be accepting the following types of
submissions:
— Proposals for Panel Discussions. Provide a brief description of

the topic (1000 words or less). Indicate the membership of the
panel and interest in organizing/moderating the discussion.

— Proposals for Demonstrations. Submit a short proposal (not to
exceed 1000 words) describing a videotaped and/or live
demonstration. The demonstration should be of a particular
system technique that shows the reduction to practice of one
of the conference topics. The demonstration or videotape
should be no longer than 15 minutes.

— Proposals for Tutorial Presentations. Proposals for the three
hour tutorials of both an introductory and advanced nature are
requested. Topics should relate to the management and
technical development of useful artificial intelligence appli
cations. Tutorials which analyze classes of applicants in
depth or examine techniques appropriate for a particular class
of applicants are of a particular interest.
Each tutorial proposal should include the following:

• Detailed topic outline and extended abstract (about 3
pages).

• Intended audience and assumed beckground
knowledge.

• Half-page synopsis of focus, and benefits to audience.
• Full professional vita (including lecture/tutorial

experience) and a one paragraph summary.
— Proposals for Vendor Presentations: A separate session will be

held where vendors will have the opportunity to give an
overview of their Al-based software products and services.

IMPORTANT DATES
— August 31,1990: Six copies of papers, and four copies of all

the proposals are due. Submissions not received by that date
will be returned unopened. Electronically transmitted mate
rials will not be accepted.

— October 23, 1990: Author notifications mailed.
— December 7, 1990: Accepted papers due to IEEE. Accepted

tutorial notes due to Tutorial Chair.
— February 24-25, 1991: Conference tutorial program.
— February 26-28, 1991: Conference technical program.
Submit Papers and Other Proposals to:
Tim Finn
Center for Advanced Information Technology
Unisys
70E Swedesford Road
P.O.Box 517
Paoli, PA 19301
Phone:215-648-2840
CSNET: fmin@prc.unisys.com
Fax:215-648-2288
Submit Tutorial Proposal to:
Daniel O’Leary
Graduate School of Business
University of Southern California
Los Angeles, CA 90089-1421
Phone: 213-743-4092. FAX: 213-747-2815
For registration and additional conference information, contact:
CAIA-91
IEEE Computer Society
1730 Massachusetts Avenue, NW
Washington, DC 20036-1903
Phone:202-371-1013

mailto:fmin@prc.unisys.com

