

A Review of Data Base Query Languages

Language Debugging Help
Facilities

Data
Dictionary

Decomposition Why
of Commands Command

Defined
Abbreviations

ADASCRIPT no no yes no
ALPHA no no yes no
APPLE no no
ARPL no no
CONVERT no no
DBMSIQ no yes yes no no no
DMINQ no yes yes no no yes
DM-IV no no yes no no no
GIS no no
GPLAN yes yes no no
INQUIRE no yes no no no no
IQF no no
MANAGE/QUERY no no yes no no no
MINES no no yes yes yes no
MARK IV no no no
NIPS/FFS no yes no
NUL no no no yes no no
QUERY/3000 no yes yes no no no
QUERY-BY-EXAMPLE no yes yes no no no
RAMIS no no
RENDEZVOUS yes yes yes no
RIQS no yes no
SEQUEL no no yes no no no
SQUARE no no no no no no
SQUIRAL no yes no
SYSTEM 2000 possibly yes no
TDMS no yes no partially no

Figure 7. User Aids

to determine if the semantics of their queries correspond
to their intentions. The development of new techniques for
debugging queries is an area where considerable research is
necessary.

The final task of the query language user is modifica
tion. There are times when a query language user may have
to modify a query, written by himself or others, due to
changes in management requirements.

3. AIDS FOR THE QUERY LANGUAGE USER
The following aids for query language users are not all

absolutely essential in a query language, but they do make
life easier for the user. The languages incorporating some
of these features are shown in the table contained in Figure
7. Other features, such as simplicity, have been omitted be
cause classification depends upon a personal bias with
regard to whether or not these languages meet the require
ments.

3.1 Debugging
The need for this feature has been covered in the

previous section on tasks of the query language user. Of
the languages covered in this paper, only GPLAN (Figure
2) and RENDEZVOUS (Figure 5) definitely provide this
feature. The method used in these two languages is similar,
in that both use a query analyser to check the query for
consistency, ambiguity and completeness. Where necessary
further information is obtained from the user. Tsichritzis
and Lochovsky (1977) suggest that debugging facilities are
also provided by SYSTEM 2000 but give no indication as
to how they have been implemented.

3.2 Help Facilities
Interactive programming systems often contain HELP

commands to give the programmer on-line instruction regar
ding the use of the various operating system commands.
This concept can be extended to query languages where the

148

HELP command can be of great assistance to the casual
data base user. When used, it can provide the user with in
formation about a particular command. A HELP command
is provided in the basic query language of GPLAN (Hase-
man and Whinston, 1977). This command displays the
syntax of commands, the descriptions of the commands
and then gives some examples of the use of the command.
Figure 8 shows an example of how the HELP command can
assist the user with information about the DELETE com
mand. If the full details are not required then a single por
tion can be requested individually by one of the following
methods:

SYNTAX <command>
DESCRIPTION <command>
EXAMPLES <command>
Languages which provide HELP facilities are listed in

Figure 7.

3.3 Data Dictionary
According to Fry and Sibley (1976), the data diction-

HELP DELETE

Syntax:

DELETE ITEM FOR CONDITION

Description:

Deletes every item from the system that contains the item
that satisfies the conditional. Should be used with extreme
caution! (It is recommended to perform a LIST first to see
what data will be deleted.)

Example:

DELETE ADO FOR RVID = 1 and RC1D = 14

Figure 8. GPLAN HELP Command

The Australian Computer Journal, Vol. 13, No. 4, November 1981

A Review of Data Base Query Languages

!IDBPIC DEMOl ADMl

STRUCTURE ADMl IN DATA BASE SUBSCHEMA DEMOl

DIV
I

I

SALE

'l
\
CUST ---------- INVTY
/ l, I, /

/ l , , /
/ 7/ 7/ I, , 7

/ I I /
CREDIT ACTREC ORDERS

Figure 9. IDBPIC Output

ary is the version of the data definition that is readable by
humans. Consisting of an entry for every record, set and
data-item, the data dictionary is stored in the data base, and
can be accessed by the various users in an interactive
manner (Haseman and Whinston, 1977). It provides a narr
ative explanation of meaning of the data names, and the
data format, thus giving the user a precise definition of the
terms. This allows ad hoc users to browse through the
definitions to determine the correct data names.

It is pointed out by Fry and Sibley (1976) that it is
unrealistic for the user of an information retrieval system to
be expected to know the name of each record, set or data-
item. If such a system is not programmed to help users to
find these names, there may be no way for the user to
express any misgivings about the meaning of the names
used, or about the structure of the data. Information about
the file and field nameS is usually stored somewhere in the
computer, and it should be as easy to search and retrieve
this information, as it would the subject matter in the files.
Many retrieval systems are not programmed to permit sear
ching this naming type of information.

The National Central Bureau of Statistics in Sweden
use the ARKDABA system, which permits the user to
either ask for, or be supplied with automatically, details of
the schema definition (Sundgren, 1975). If the user has in
sufficient understanding of the data a tutorial sub system
can be invoked.

With some languages, such as MANAGE/QUERY, it is
necessary to exit from the query language in order to
invoke utilities which supply details about the data base.
Figure 9 gives an example of the output from the IDBPIC
utility, which I suspect merely displays files which were
previously created using the editor, rather than actually ex
tracting this information from a data dictionary.

Some DBMSs, which do not provide query language
facilities, do in fact have a data dictionary. For example,
IDMS (Kroenke, 1977) has a data dictionary system which
provides cross reference documentation about sets, records,
data items, subschemata and user programs. Not only is the
data dictionary useful for the implementation of query
languages, but it also helps in the achieving of data indepen

The Australian Computer Journal, Voi. 13, No. 4, November 1981

dence. The languages providing data dictionary facilities are
listed in Figure 7.

3.4 Simplicity
A query should be expressable in a form as simple as

possible, thus users should not be required to learn pro
gramming languages such as COBOL and FORTRAN (Hase
man and Whinston, 1976).

It has been pointed out by Kroenke (1977) that at
present the majority of data base tasks involve applica
tions programs, rather than query languages. There is the
perplexity that if a query language is simple enough to be
used it is not powerful enough to be useful, and if it is
powerful enough to be useful it is often too complex to be
used. This can be partly overcome by developing powerful
capabilities within a restricted function. Kroenke (1977)
believes the relational model to be much simpler from the
view-point of the user.

A query language should be easy to learn, however,
what constitutes being easy to learn depends upon psycho
logical issues. Shneiderman (1978) is of the opinion that
users who think verbally will prefer the keyword based
approach of SEQUEL, while those who can think in
abstract mathematical terms will prefer the mathematical
like positional notation of Query-By-Example. Carlson and
Kaplan (1976) suggest that their language, APPLE, is more
suited to the casual user than either SEQUEL or Query-By-
Example.

The different ways in which people may view a lang
uage can be seen by the way that Date (1977) and Deen
(1977) discuss ALPHA in terms of simplicity and power
while Haseman and Whinston (1977) consider that the
language is too complex for most users.

3.5 Decomposition of Commands
From the point of view of the user it appears to be

useful to allow the decomposition of complex commands
into simple statements. This avoids the nesting of expres
sions, which may be undesirable for non-programming
users. NUL is one language which permits decomposition
of commands by the assignment of statement labels, as
shown in Figure 3. Other languages permitting decom
position of commands are listed in Figure 7.

3.6 Suitability of the Language for the User
Query language requirements differ considerably

from one user to another, therefore the query language
must allow for these differences. When the user does not
know the program he is dealing with, he cannot see the
logic behind the mysterious symbols he is sometimes
forced to use. Being unable to think in the language he is
given to work with, 'he cannot solve his own problems.
The natural result is for him to avoid use of the system
and to make the claim, very likely valid for him, that it
does not work. Tsichritzis and Lochovsky (1977)
suggest that language generators could be used to provide
different languages for different classes of user.

Suitability depends upon one’s point of view. Of the
languages surveyed, a number are inferred to be more
suitable for the user than any of the other languages.

3.7 Meaningful Error Messages
Because it is desirable to have error messages which

are as meaningful as possible, the length of such messa
ges can sometimes present problems. Hebditch (1972)

149

A Review of Data Base Query Languages

Language Single
Record

Record
Collection

Combination Quota Grouping T otal
Report

ADASCRIPT yes yes yes yes
ALPHA yes yes yes yes yes
APPLE no yes yes yes yes
ARPL no yes no yes
CONVERT yes no no yes
DBMSIQ no yes no no no yes
DMINQ yes yes no yes no yes
DM-IV yes yes
GIS yes yes yes
GPLAN yes yes yes
INQUIRE yes no no no
IQF yes yes
MANAGE/QUERY no yes yes yes yes yes
MINES yes yes no yes no yes
MARK IV yes yes
NIPS/FFS yes yes
NUL no yes no yes no yes
QUERY/3000 yes no no yes
QUERY-BY-EXAMPLE no yes yes
RAMIS yes
RENDEZVOUS yes yes yes
RIQS yes
SEQUEL no yes yes yes yes
SQUARE no yes yes yes yes
SQUIRAL no yes no no no yes
SYSTEM 2000 yes yes yes
TDMS yes yes yes

Figure 10. Types of Retrieval

describes a language, not being one of the languages
reviewed in this paper, where a WHY command can be
used to prevent experienced operators, who are doing
familiar work, from becoming annoyed with long error
messages resulting from minor typing slips. The system
merely displays “ERROR” when an error occurs. If the
mistake is obvious the user can continue by retyping the
command, otherwise the WHY command can be used
to give a full description of the cause of the error. Of all
the languages covered, MINES is the only one to provide
this feature as shown in Figure 7.

3.8 Abbreviations
Some query language users prefer to be able to use

abbreviations rather than having to enter the full com
mand. This applies especially to those users with a pro
gramming background. Some languages provide system-
defined abbreviations, while some others allow the user to
define his own. Those languages permitting the user to
define his own abbreviations are listed in Figure 7.

4. QUERY LANGUAGE FUNCTIONS
4.1 Retrieval

Retrieval, or interrogation, is the location of the data
base records using keys and qualifiers. The user provides the
query and the query language returns the required data.
Retrieval may be as simple as selecting a single record or as
extensive as selecting the entire data base. The various
types of retrieval are summarised in Figure 10.

4.7.7 Single Record Retrieval
Single record retrieval represents the ability to

retrieve a single record by access to a file based upon its
entry point (prime key attribute) and also the ability to
retrieve a single record by entering the data base at an entry
point and navigating to find the desired record.

Any query language capable of the next category of

retrieval, record collection retrieval, can obviously retrieve
single records, however, in the table in Figure 10 “single
record” refers to entry point and simple navigational
retrieval.

4.1.2 Record Collection Retrieval
Record collection retrieval is based on conditional

and boolean operators. The user will retrieve a group of
records based on some criterion, such as selecting all
employees whose age is greater than 30, and who work in
the sales department.

4.1.3 Combination Retrieval
Combination is the result of using the output of one

query as the input for another. The term composition may
sometimes be used to describe this type of retrieval. Com
bination retrieval could involve finding the names of the
departments which have more than 30 employees, and then
displaying the department managers’ names.

4.1.4 Quota Retrieval
Quota retrieval is much like record collection

retrieval, except that the number of records to be displayed
is limited by the user.

4.1.5 Grouping
Grouping involves the collecting together of items

with a common domain value such as department number.
An example of grouping could be to display the names of
departments where the average annual salary is greater than
$15,000. In this type of query the employees are grouped
by department before the average can be taken.

4.1.6 Total Report
Total report is a listing of all information in the

file. This type of output is best suited to batch processing
but there is no reason why it can not be initiated inter
actively.

150 The Australian Computer Journal, Vol. 13, No. 4, November 1981

A Review of Data Base Query Languages

Language Update Phonetic
Search

Bar
Chart

Graph
Plotti ng

ADASCRIPT yes yes no no
ALPHA yes no no no
APPLE no no no no
ARPL no no yes yes
CONVERT no no no no
DBMSIQ no no no no
DMINQ no no no no
DM-IV yes no no no
G1S yes no no no
GPLAN yes no yes yes
INQUIRE yes no no no
IQF yes no no no
MANAGE/QUERY yes no no no
MINES no no no no
MARK IV yes no no no
NIPS/FFS yes no no no
NUL yes no no no
QUERY/3000 yes no no no
QUERY-BY-EXAMPLE yes no no no
RAMIS yes no yes yes
RENDEZVOUS no no no no
RIQS yes no yes yes
SEQUEL yes no no no
SQUARE yes no no no
SQU1RAL no no no no
SYSTEM 2000 yes no no no
TDMS yes no no no

Figure 11. Query Language Functions

4.2 Update
Updating a data base is a process of changing the

value content of some portion of that data base. Update is
a process somewhat analogous to interrogation in that some
part of the data base must be selected. However, once that
part has been selected, it is then changed in some defined
way rather than being displayed as a report. Many query
languages can not only interrogate the data base, but can
also perform updating. The provision of update features in
a query language is often achieved in a rather clumsy man
ner, motivating Robinson’s (1975) statement that ALPHA’S
update functions “do not sit too easily on it”. In some
systems, such as SYSTEM 2000, updating is only permitted
in batch mode. Languages providing update facilities are
summarised in Figure 11.

While the first version of many languages, including
SEQUEL and Query-By-Example, did not provide updating,
later versions of these languages have incorporated this
feature. The ease of providing updating facilities is prob
ably the reason that many query languages have this
feature, but I believe that in the current climate, updating
by a query language in a multi-user environment is a danger
ous practice. One point to consider is that updating by a
query language may not satisfy audit requirements, or if it
does satisfy those requirements, it is highly likely that its
inclusion is more than a trivial task.

4.3 Phonetic Search
Phonetic searching permits retrieval of data on the

basis of sound patterns rather than actual spelling. Al
though in certain applications this capacity is useful, it
does increase the storage requirements because of the
need to include additional descriptors in the data base.

ADASCRIPT, the only language which appears to
have this feature requires that the field which will be used
for the phonetic search be defined at load time. The
method adopted by the ADABAS system has been simply

to drop the vowels and one letter of each double conson
ant. For example, “HILLS” becomes “HLS”. Hewes and
Stow (1965) describe a method of phonetic search which
should achieve better results than those obtainable by
ADABAS.

4.4 Graphics
Some query languages provide the ability to produce

graphs and bar charts. Figure 11 shows which languages
provide these features.

4.5 Boolean Operators
Several conditions may be combined by means of

boolean operators. Usually some form of precedence rules
apply to these operators, e.g., AND has precedence over
OR. This order of precedence may be changed by the use of
parentheses. The availability of boolean operators is sum
marised in Figure 12.

4.6 Conditional Operators
Six standard conditional operators are used for

testing the values of data items. They are less than, greater
than, equal, not equal, less than or equal, and greater than
or equal. These operators, usually used in conjunction with
WHERE or IF, are referred to as relational operators in
most FORTRAN manuals, and also the CODASYL feature
analysis (CODASYL, 1971b). However, the term condit
ional operators is used in preference to relational operators
in order to distinguish them from those operators used for
the manipulation of relations.

Some languages provide “don’t care” characters for
use when matching on character strings. Other languages
provide a range test on data items, however the languages
which don’t provide these feature can usually achieve the
same effect by alternate means. Still others will have an
existence condition which will check the presence or
absence of a value in an instance of a data item. Details of
those languages providing conditional operators can be
found in Figure 13.

Language And Or Not Nor

ADASCRIPT yes yes yes yes
ALPHA yes yes yes no
APPLE yes yes yes no
ARPL yes yes yes no
CONVERT yes yes no
DBMSIQ
DMINQ yes yes yes
DM-IV
GIS yes yes yes no
GPLAN yes yes yes no
INQUIRE no no no no
IQF yes yes yes no
MANAGE/QUERY yes yes yes no
MINES yes yes yes no
MARK IV yes yes no no
NIPS/FFS yes yes no
NUL yes yes no
QUERY/3000 yes yes yes
QUERY-BY-EXAMPLE yes yes yes no
RAMIS
RENDEZVOUS yes yes yes no
RIQS yes yes yes
SEQUEL yes yes yes
SQUARE yes yes yes yes
SQUIRAL yes yes
SYSTEM 2000 yes yes yes
TDMS yes yes yes

Figure 12. Boolean Operators

The Australian Computer Journal, Vol. 13, No. 4, November 1981 151

A Review of Data Base Query Languages

Language Standard
Condit
ional Op
erators

Range
Test

Don’t
Care

Exists

ADASCRIPT yes yes
ALPHA yes yes
APPLE yes
ARPL yes yes
CONVERT yes
DBMSIQ yes no no no
DMINQ yes no no no
DM-IV yes yes
GIS yes yes yes
GPLAN yes
INQUIRE no no no no
IQF yes
MANAGE/QUERY yes yes
MINES yes no no no
MARK IV yes yes yes
NIPS/FFS yes yes
NUL yes no no no
QUERY/3000 yes no no no
QUERY-BY-EXAMPLE yes yes
RAMIS yes
RENDEZVOUS yes
RIQS yes
SEQUEL yes
SQUARE yes yes
SQUIRAL yes
SYSTEM 2000 yes yes yes
TDMS yes yes yes

Figure 13. Conditional Operators

4.7 Relational Operators
Relational operators include selection, projection,

join and division, plus the set operators intersect, union and
difference. Many languages provide the equivalent of these
features in some form or other, a summary of these being
contained in Figure 14.

4.8 Arithmetic Operators
Arithmetic operators are provided in many languages

so that the user has computational ability. Another use of
such operators is to extend the scope of the selection cri
teria. Languages providing these operators are shown in
Figure 15, however, the use of parentheses, as shown in
this figure, can also apply to boolean operators.

4.9 Statistical Functions
To assist the query language user by extending the

query facilities, built-in statistical functions are often pro
vided. A comparison of the types of functions that are
available is given in Figure 16. In some languages, the name
of the function may differ from those in the figure, and in
some instances the functions may be combined. For
example, in GPLAN all the functions are combined into
the STAT function. Similarly, in MINES, the COUNT and
AVERAGE functions are combined with the SUM
function.

4.10 Mathematical Functions
Although mathematical functions are not an essential

feature of a query language, they can be found in a number
of langauges, as shown in Figure 17.

5. TYPE OF DIALOGUE
The type of dialogue by which the user actually com

municates with the data base system is extremely impor
tant. It should be chosen to reflect the background of the
user. For example, casual users will usually require an
English-like dialogue, while dedicated users may become
frustrated by the verbosity of such a language, and prefer a
language based upon mnemonics.

Martin (1972) identifies and describes twelve
different approaches to man/machine dialogue. The more
important of these approaches from the point of implemen-

Language Join Projection Selection Division Union Intersection Difference

ADASCRIPT yes
ALPHA yes yes yes yes yes yes
APPLE yes yes yes yes
ARPL yes
CONVERT yes
DBMSIQ no no no
DMINQ no no yes no yes yes yes
DM-IV no no yes no
GIS
GPLAN yes yes
INQUIRE no no no no no no no
IQF yes
MANAGE/QUERY yes
MINES yes yes yes no yes yes no
MARK IV yes
NIPS/FFS
NUL no no yes no no no no
QUERY/3000 no no yes no no no no
QUERY-BY-EXAMPLE yes yes yes yes yes yes yes
RAMIS yes
RENDEZVOUS yes yes yes
RIQS yes
SEQUEL yes yes yes yes yes yes yes
SQUARE yes yes yes yes yes yes yes
SQUIRAL yes yes yes yes yes yes yes
SYSTEM 2000 yes
TDMS yes

Figure 14. Relational Operators

7 52 The Australian Computer Journal, Vol. 13, No. 4, November 1981

A Review of Data Base Query Languages

Language Plus,
Minus,
Multiply,
Divide

Expon
entiation

Unary
Minus

Paren
thesis

ADASCRIPT yes yes yes
ALPHA no no no yes
APPLE
ARPL yes yes yes yes
CONVERT yes yes yes
DM-IV yes
DMINQ yes yes
DBMSIQ
GIS yes yes
GPLAN yes yes no yes
INQUIRE no no no no
IQF yes
MANAGE/QUERY yes yes yes
MINES yes yes yes yes
MARK IV no no
NIPS/FFS yes
NUL no no no yes
QUERY/3000 yes
QUERY-BY-EXAMPLE
RAMIS yes
RENDEZVOUS no no no no
RIQS yes
SEQUEL yes
SQUARE yes no yes
SQUIRAL
SYSTEM 2000
TDMS yes yes

Figure 15. Arithmetic Operators

ting query languages, are discussed here-in.The type of dia
logue used by the various query languages is shown in
Figure 18.

5.1 Programming Languages
Most terminal users are not programmers, yet most

interactive languages to date require an aptitude to
programming. Rather than expecting these persons to use
interactive languages such as BASIC there is a need for a

Language ABS Log Trigo- Square
nometric Root
Functions

ADASCRIPT no no no no
ALPHA no no no no
APPLE no no no no
ARPL yes yes yes no
CONVERT no no no no
DBMSIQ no no no no
DMINQ no no no no
DM-IV no no no no
GPLAN yes yes yes yes
GIS no no no no
INQUIRE no no no no
IQF no no no no
MANAGE/QUERY no no no no
MINES no no no no
MARK IV no no no no
NIPS/FFS no no no no
NUL no no no ' no
QUERY/3000 no no no no
QUERY-BY-EXAMPLE no no no no
RAMIS yes no no no
RENDEZVOUS no no no no
RIQS no no no no
SEQUEL no no no no
SQUARE no no no no
SQUIRAL no yes yes no
SYSTEM 2000 no no no no
TDMS no no no no

Figure 17. Mathematical Functions

different form of man-computer dialogue, especially where
data base is concerned.

5.2 Natural Language Dialogue
It is often argued that because most query language

users are competent in using a natural language such as
English, that it would be the ideal language for data base
interaction. Natural language dialogue eliminates the need
for the user to learn the syntax of a language. It gives an

Language Sum Mini
mum

Maxi
mum

Aver
age

Standard
Devia
tion

Count Vari
ance

Top Bottom Percent

ADASCRIPT
ALPHA yes yes yes yes no yes no yes yes no
APPLE
ARPL yes yes yes yes yes yes no no no no
CONVERT yes yes yes yes no yes no no no no
DBMSIQ yes yes yes yes no
DMINQ yes yes yes yes yes yes yes no no no
DM-IV yes yes yes yes yes yes no no no no
GIS yes no no yes no yes
GPLAN yes yes yes yes yes yes yes no no no
INQUIRE no no no no no no no no no no
IQF yes no no no no yes no no no no
MANAGE/QUERY yes yes yes yes no yes no no no yes
MINES yes no no yes no yes no no no no
MARK IV yes yes yes yes no yes no no no no
NIPS/FFS yes no no yes no no yes no no yes
NUL no no no no no no no no no no
QUERY/3000 yes no no yes no yes no no no no
QUERY-BY-EXAMPLE yes yes yes yes no yes no no no no
RAMIS yes yes yes yes yes no no yes yes yes
RENDEZVOUS yes yes yes yes no yes no yes yes no
RIQS yes yes yes yes yes yes no no no no
SEQUEL yes yes yes yes no yes no no no no
SQUARE yes yes yes yes no yes no no no no
SQUIRAL
SYSTEM 2000 yes yes yes yes yes yes no no no no
TDMS yes no no yes no yes no no no no

Figure 16. Statistical Functions

The Australian Computer Journal, Vol. 13, No. 4, November 1981 153

A Review of Data Base Query Languages

illusion of unlimited machine intelligence, and according to
Shneiderman (1978) it inhibits careful thinking on the part
of the user. Just because users know the natural language
syntax, does not ensure that they know the semantics of
the query language or the semantics of the data that are
stored in the data base. In an experiment Shneiderman
(1978) compared natural and artificial language queries and
found that natural language users made significantly more
invalid queries than those using artificial languages.

Sundgren (1975) suggests that complex decision
problems may need to be expressed with great logical
precision, and that this is not characteristic of natural lang
uages. Natural languages can present problems due to the
unrealistic expectations of the user who might ask “How
can I improve profits?” The ambiguities of English syntax
and the overheads associated with natural language are
other potential problem areas.

Martin (1972) cautions that while exploration of nat
ural language in the research laboratories deserves the max
imum encouragement, the commercial systems analyst
should steer clear of any temptations luring him into this
quagmire.

5.3 Limited English Input
Many systems which claim to be using natural lang

uage are in fact using a form of limited English input where
restrictions are placed on the language syntax and also the
vocabulary.

Sometimes null (“noise”) words may be permitted to
pad out the sentence, making the input resemble English.
This could lead to problems for queries such as "LIST ALL
BRANCH MANAGERS WITH POLICE CONVICTIONS”.
It is possible that POLICE CONVICTIONS might not be
contained in the data dictionary, resulting in a list which
contained ALL BRANCH MANAGERS!

5.4 Dialogue Using Mnemonics
The use of mnemonics usually occurs with dedicated

operators of the type often found in a special purpose
application such as an air-line reservation system, there
fore such a method is unlikely to be found in generalised
query systems.

5.5 Dialogue Using Symbols
While Martin did not include this category in his list

of dialogue types, there are languages which require the use
of symbols in the expression of queries. Relational calculus,
and also languages derived from it, such as SQUARE, make
use of symbols.

5.6 Program-like Statements
Program-like statements are a variation of the use of

mnemonics. In this case the mnemonics are written in a
form that closely resembles a computer program.

5.7 Computer-initiated Dialogue
The forms of dialogue covered so far have all been

user initiated. One way of simplifying the learning process
for a language is to have the computer initiate the dialogue.

Dialogue, in the form of menu selection, may be very
time consuming. The major draw-back of this approach is
that, because of the small number of options that are avail
able, users may have their abilities restricted by the short
sightedness of the language designer.

1 54

5.8 Form Filling
Form filling is a type of computer initiated dialogue.

The user is presented with a display which has blanks which
are to be filled in.

5.9 Hybrid Dialogue
The majority of dialogues are either completely com

puter initiated or entirely user initiated, however, some
dialogues are a mixture of the two.

6. ASPECTS OF QUERY LANGUAGES
6.1 Real World or Computer Oriented

In the opinion of Sundgren (1975) current query
languages are not real world oriented. For a language to be
reality oriented, the user should be able to communicate
directly with the data base in terms of his own mental con
ception of the slice of reality about which his world
revolves. The economist will view data differently from the
sociologist, and most likely neither will view data in terms
of chains, trees or networks.

6.2 Transportability
A characteristic of any new industry is bound to be a

lack of standardisation among the products of different
manufacturers. As an industry that is still in its infancy, in
spite of progress and rate of change in recent years, the
computer field has suffered from this problem. While a
reasonable standard definition has been achieved for higher
level languages such as FORTRAN and COBOL, which are
available on many different computers, other languages
differ widely from one computer to another.

If a query language is to be transportable it must be
written in a high level language. Further, the query language
must be written with transportability in mind, by avoiding
machine dependent code. If such machine dependent code
is unavoidable, then this code should be restricted to clearly
defined modules. Swenson (1973) points out that systems

Language Type of Dialogue

ADASCRIPT English -like
ALPHA Symbols
APPLE English-like
ARPL English-like
CONVERT English-like
DBMSIQ English-like
DMINQ English-like
DM-IV English-like*
GIS English-like
GPLAN English-like
INQUIRE Mnemonics
IQF English-like
MANAGE/QUERY English-like
MINES English-like
MARK IV Form filling
NIPS/FFS Program like
NUL English-like
QUERY/3000 English-like
QUERY-BY-EXAMPLE Form filling (with mnemonics)
RAMIS English-like
RENDEZVOUS Natural Language
RIQS English-like
SEQUEL English-like
SQUARE Symbols
SQUIRAL English-like
SYSTEM 2000 English-like
TDMS English-like

* Also provides French, German and Italian.

Figure 18. Type of Dialogue

The Australian Computer Journal, Vol. 13, No. 4, November 1981

A Review of Data Base Query Languages

Language Uni- CDC IBM ICL Sie- Cyber Spec- Univac Burr- HP HP Honey- Data
vac 6000 360/ 2900 mens 70 tra 9000 oughs 2100 3000 well General
1100 370 4000 70 6700 6000 C330

ADASCRIPT yes yes yes yes
CONVERT yes
DBMSIQ
DMINQ
DM-IV
GIS yes

yes
yes

yes

GPLAN yes yes
INQUIRE
IQF yes

yes

MANAGE/QUERY
MARK IV

yes
yes yes yes yes

MINES yes
NIPS/FFS
QUERY/3000

yes
yes yes

QUERY-BY-EXAMPLE yes
RAMIS
RIQS yes

yes

SQUIRAL yes
SYSTEM 2000 yes yes yes yes yes
TDMS yes

Figure 19. Computer Hardware

tend to become machine dependent rather rapidly because
of the amount of software and the' number of software
interfaces that have to be implemented on specific hard
ware.

Figure 19 shows the hardware on which the various
languages have been implemented. While not the only
criteria, those languages which have been implemented on
more than one manufacturers’ hardware could be consid
ered to be transportable.

6.3 Degree of Procedurality
Specification, or non-procedural languages, describe

what is to happen rather than the steps necessary for it to
occur. Specification languages are generally easier to use
than procedure oriented languages, but are sometimes
limited in their capabilities. Davies (1974) suggests that
because of these limitations it is desirable to have some
procedural capabilities built into the language as well.

A similar view is put forward by Sundgren (1975)
who asks “in what situations and to what degree should a
data base interrogation language be non-procedural and
when is a more procedural language more efficient from
the interactor’s point of view?” He points out that the
DBTG found it unrealistic to require that it should be
possible to express non-parametric information needs in a
non-procedural way, and that the parametric approach
caters for only a low number of pre-defined needs, thus
only a small percentage of data base information is
readily available to the user.

There are high overheads associated with the use of
non-procedural query languages, but this is to some extent
off-set by the ease of getting the program working as
opposed to using a more procedural language. The
FORTRAN program in Figure 20a was written to illustrate
this point. Although it is a trivial program it took one hour
and 44 minutes of my time, plus 13 minutes and 48
seconds of elapsed computer time on a HP2100A to
produce a working program. On the other hand the MINES
commands in Figure 20b took five minutes and 24 seconds
to enter and to produce results.

According to Olle (1974), the terms procedural and
non-procedural are undefinable in that they are two un-
definable points on the procedurality spectrum. Because of

The Australian Computer Journal, Voi. 13, No, 4, November 1981

(a)

FTN4,L
PROGRAM DEMO
COMMON 1ERR,KEY(2),IREC,PRKEY,ISCH,MEM(1800)
LOGICAL ERR
DIMENSION NAME(12), IAGNT(12)
ISCH = 2HZ2
CALL INVKE(1800)
CALL UWA(5,NAME)
CALL UWA(7,IAGNT)
CALL OPEN(O)
WRITE (6,99)

99 FORMAT 1 HI.34X,12HAGENT REPORT//)
WRITE (6,98)

98 FORMAT(20H AGENT ID
* 20HINITIALS
* 20HSURNAME
* 20HCOMMISSION CODE ,/)

IFLAG = 0
10 IAREA = 2HA3

KR EC = 7
CALL FEACH(IAREA,KREC,IFLAG)
IF (ERR(JERR)) GO TO 90
CALL GET
CALL FOWN(60)
CALL GET
WRITE (6,97) IAGNT(1), IAGNT(6), IAGNT{7), NAME,

I AGNT(9)
97 FORMAT(l9,11X,2A2,16X,12A2,110)

IFLAG = 1
GO TO 10

90 CALL CLOSE(O)
STOP
END
END$

(b)

:PR,MINES
SCHEMA Z2.
1.1 l-O-MODE 3.
1.2 HEADING “AGENT REPORT”.
1.3 SET.
1.4 FIND NEXT AGENTS.
1.5 FIND OWNER AGENT-NAME.
1.6 TABULATE AGENT-ID INITIALS-A SURNAME-REC

COMMISSION-CODE.
1.7 REPEAT.
DO PART 1.
BYE.

155

Figure 20. (a) FORTRAN DML PROGRAM, (b) MINES Commands

A Review of Data Base Query Languages

LESS
A

........... RENDEZVOUS

............MARK IV, NIPS/FSS

............SQUARE, SEQUEL, Query-by-example, SYSTEM 2000,
SQUIRAL

........... GPLAN, RAMIS, ADASCRIPT, MANAGE/QUERY, IQF,
GIS

........... MINES, RIQS

........... DMINQ

........... QUERY 3000

........... INQUIRE

............ALPHA

............CODASYL DML

............COBOL, FORTRAN

........... ASSEMBLER

V
MORE

Figure 21. Procedurality Spectrum

this, we should talk of more procedural, or less procedural.
COBOL is less procedural than assembly language, but, is
more procedural than query languages such as SEQUEL or
even MINES. Olle’s definition of “less procedural” implies
ease of writing, whereas “more procedural” implies more
user writing to specify some process. Figure 21 shows the
procedurality spectrum.

6.4 Security
When all data is integrated in a company-wide DBMS

and is readily available through either programming or ad
hoc query languages, the ability to penetrate the security
obviously increases (Sibley, 1976).

In the opinion of Huhn (1974), query languages
create additional security problems over and above those
which exist with host language programs. He suggests that
the security can be built into the inquiry software and
offers suggestions such as restricting certain types of queries
to specific terminals and maintaining user IDs for various
types of query. Huhn states that it is clear that considerably
more work must be done in the area because of the
problem of data base security.

Often the level of security available with a query lang
uage is governed by the privacy controls available in the
DBMS, however, some systems, such as DMINQ, rely only
upon the file security built into the operating system.
DMINQ provides “own code” facilities in the DML to limit
access to data. Systems such as ADABAS and Honeywell’s
DM-IV provide an encipher/decipher feature to prevent
illegal browsing of the data in the data base. Details of
security features of languages are shown in Figure 22.

6.5 Relational Completeness
A modern data base management system should be

capable of responding to any new unanticipated query in a
reasonably uniform time without impacting previously
written queries. Further, according to Haseman and
Whinston (1976) all legitimate data and data relationships
should be accessible using the operators defined for the
query language. Such a language which enables the user to
express any query whose answer is semantically contained
in the data base is said to be relationally complete. Date’s
(1977) definition of relational completeness is more res
trictive, interpreting it to mean that the required data can
be retrieved by means of a single self-contained request.
Relational algebra and relational calculus are relationally

156

Language Security Complete
ness

Extenda
bility

ADASCRIPT full
ALPHA yes yes
APPLE
ARPL
CONVERT
DBMSIQ registered users
DMINQ file level
DM-IV privacy locks yes
GIS full yes
GPLAN yes yes
INQUIRE password no no
IQF file level
MANAGE/QUERY
MINES none no yes
MARK IV none yes
NIPS/FFS
NUL
QUERY/3000
QUERY-BY-EXAMPLE full yes no
RAMIS file level
RENDEZVOUS
RIQS yes
SEQUEL full yes
SQUARE yes
SQUIRAL yes
SYSTEM 2000 full
TDMS yes

Figure 22. Language Features

complete, consequently the relational data languages can be
said to be complete.

While it can be seen that relational completeness is
desirable, Shneiderman (1978) is of the opinion that many
queries with a relationally complete language are extremely
difficult to compose or comprehend as few people have a
full understanding of first order predicate calculus. In addit
ion many simple-to-understand queries which are easy to
express, are outside the bounds of relational completeness.
For example, the task of finding the shortest path between
two remote cities, using a table of distances between
adjacent cities, is not simply expressible in relational
calculus.

Relationally complete languages are listed in Figure
22.

6.6 Extendability of Language
A query language should be easily extendable to

allow for special purpose library functions to be incorpora
ted (Shneiderman, 1978; Haseman and Whinston, 1976).
Query languages also need the ability to define and use
additional routines of arbitrary complexity using a high
level language. A further method of extending the scope of
the language is to use extraction files, so that data retrieved
as the result of a query can be used as input to other pro
grams without necessitating any further data preparation
(Swenson, 1973). Figure 22 shows those languages which
are extendable by any or all of these methods.

6.7 User Knowledge
Ther? is growing interest in the development of the

casual user interface. Some DBMSs already provide good
languages for the non-programmer who is willing to learn a
few rules (Fry and Sibley, 1976).

Carlson and Kaplan (1976) express the opinion that
users of ALPHA require a knowledge of mathematical no
tation, SEQUEL requires a knowledge of the concept of
navigation across the boundaries of relations, and Query-

The Australian Computer Journal, Voi. 13, No. 4, November 1981

A Review of Data Base Query Languages

Language Page Sort
Throw
and/or
Headings

Auto- User
matic Report
Report Format-
Format- ting
ting

ADASCRIPT yes yes
ALPHA yes
APPLE
ARPL yes
CONVERT
DBMSIQ
DMINQ
DM-IV yes yes yes
GIS yes yes yes yes
GPLAN yes yes
INQUIRE
IQF yes
MANAGE/QUERY yes yes yes
MINES yes no yes no
MARK IV yes yes yes yes
NIPS/FFS yes yes yes yes
NUL no no yes no
QUERY/3000 yes yes yes yes
QUERY-BY-EXAMPLE yes
RAMIS yes yes yes yes
RENDEZVOUS
RIQS
SEQUEL yes
SQUARE
SQUIRAL
SYSTEM 2000 yes yes
TDMS no no yes yes

Figure 23. Output Formatting

By-Example requires a knowledge of the semantics of an
“Example element” particularly when used to invoke a
linking mechanism between relations, while APPLE re
quires a minimal understanding of the relational model.

In many cases the user will need some concept of the
available paths and a realisation of the fact that if multiple
paths exist they do not necessarily produce the same
results. In APPLE it is the responsibility of the data base
administrator, rather than the user, to determine the access
paths.

No matter which language we consider, the user must
have some knowledge. Even with RENDEZVOUS, the
language which probably demands the least of the user,
Codd (1974) assumes the user has an adequate Idea of what
each relation name and attribute denotes, but does not
need to be familiar with relational concepts.

6.8 Relevance of Information Retrieved
In many applications it is desirable to provide the

user with more information than is actually necessary to
answer his query. Haywood (1972) points out that the ad
vantage of this approach is that the user need only input
a simple key to retrieve any aspect of a single record, thus
simplifying the language interface between the terminal and
the data base. Providing more complete information
pertaining to a particular key than is immediately necessary
reduces the probability of subsequent access to the same
data set. However, it also has the disadvantage of the extra
cost of retrieving and transmitting irrelevant information
which then has to be interpreted by the terminal user. It is
desirable that a compromise should be adopted between the
two extremes of supplying either too little or too much
information in response to a query.

6.9 Output Formatting
The final step in handling a query is the actual out

put. Some systems allow the user to specify the title and
positions in which data is to be displayed. Other systems
automatically generate the report in a standard format,
relieving the user of considerable effort. Output is some
times performed by a separate report program rather than
by the query language.

Sundgren (1975) expresses the opinion that with
most languages the output specification is largely proced
ural, and raises the question as to whether in the future it
will be possible to produce algorithms which will produce
output without any explicit specification. He points out
that future data bases will contain descriptions of them
selves making the implicit formatting of reports feasible.
Some of the output formatting features are summarised
in Figure 23.
6.10 Estimate of Timing

Haywood (1972) points out that where the infor
mation requested is simply a single data item or record the
access times are a simple function of the file structures.
However, in many cases information which management
requires is statistical in nature, involving data from more
than one data set. For example, a manager in an insur
ance office may wish to know how many claims for
storm damage with a sum insured of over $10,000 have
been received from a particular locality over the last six
months. Such an ad hoc query may involve extensive file
searching involving fairly complex file structures.

Bottlenecks can occur in the retrieval system where
there are several terminals using the same data base for ad
hoc queries. It may be necessary to restrict the range of
queries allowed in an on-line environment such that the
response time of the system does not rise to intolerable
levels. Users specifying queries necessitating extensive
file searches should be warned by the system. If, after
the warning, the user still requires the query to be exe
cuted, it should be automatically run in batch mode when
the on-line system is not in operation.

6.11 Deductive Capability
Using deductive capabilities a query language may be

used to extract information that is not explicitly stored in
the data base, but that can be inferred by combining
specific facts with coded assertions (Kellog, Klahr and
Travis, 1977). The ability to provide this capability is desir
able but, because of implementation problems such systems
are at present only found in research establishments.
Meadow (1970) points out the difficulty confronting the
query language implementor is that computer programs
lack inference drawing capability, thus cannot express orig
inal ideas. Many of today’s sytems, such as GPLAN, employ
combinations of information retrieval and simulation.

6.12 Indirect and Direct Modes
A number of query languages provide two modes of

operation; direct and indirect. In the direct mode, instruc
tions are executed immediately they are entered, which
makes this mode suitable for browsing through the data
base. The indirect mode is more suited to work of a repet
itive nature where instructions are stored in a file and they
may be executed as often as required. Indirect and direct
modes may usually be inter-mixed. Reference to Figure 24
will reveal those languages which provide direct and indirect
modes of operation.

The Australian Computer Journal, Voi. 73, No. 4, November 7981 757

A Review of Data Base Query Languages

Language Direct/
Indirect

Browsing Batch of
Interactive

ADASCRIPT yes
ALPHA
APPLE
ARPL yes
CONVERT
DBMSIQ interactive
DMINQ
DM-IV yes interactive
GIS both
GPLAN both
INQUIRE
IQF yes
MANAGE/QUERY yes
MINES yes yes both
MARK IV yes batch only
NIPS/FFS
NUL yes interactive
QUERY/3000 yes both
QUERY-BY-EXAMPLE
RAMIS both
RENDEZVOUS
RIQS yes both
SEQUEL interactive
SQUARE
SQUIRAL
SYSTEM 2000 yes both
TDMS yes

Figure 24. Language Features

6.13 Heuristic Searches (Browsing)
The aim of a heuristic search is to obtain results

which are dynamically dependent on the data present in the
data base. While this ability may be built into the query
language, it is usually provided by permitting the user to
browse through the data base on a trial and error basis.
Figure 24 lists those languages which permit browsing by
the user.

6.14 Batch/Interactive
Some query languages are designed for batch use, but

most are designed to be used interactively. A number of
languages will function in either mode as shown in Figure
24.

6.15 DATA STRUCTURES AND COMPLEX QUERIES
While most queries will be fairly simple in practice, a

query language should allow the user to ask complex ques
tions. Queries should not be restricted to a single hierarchi
cal path, or to flat files, as is the case with a number of
languages. This form of restriction can stem from the
underlying data structure, or from language constructs
which restrict the user’s view of the data. It could be con
sidered that those languages based upon a heirarchical data
structure do not have the potential for complex queries,
while those based upon relational concepts do indeed have
this potential. Other data structures are not so clear cut:
ADASCRIPT which is based on an inverted structure has
the capability of performing complex queries, while RIQS,
also based upon an inverted structure does not have this
capacity.

Apart from the data structure, the ability to handle
complex queries depends upon a number of factors dis
cussed throughout this chapter: the most important of
these factors being relational completeness. The other fac
tors include record collection retrieval, together with the
ability to handle arithmetic, boolean, conditional and

158

Language Data Structure Complex
Queries

ADASCRIPT INVERTED yes
ALPHA RELATIONAL yes
APPLE RELATIONAL yes
ARPL HIERARCHICAL no
CONVERT HIERARCHICAL no
DBMSIQ NETWORK no
DMINQ NETWORK no
DM-IV NETWORK no
GPLAN NETWORK yes
GIS INDEXED SEQUENTIAL no
INQUIRE INDEXED RANDOM no
IQF INDEXED SEQUENTIAL no
MANAGE/QUERY INDEXED yes
MINES NETWORK yes
MARK IV INDEXED SEQUENTIAL no
NIPS/FFS INDEXED SEQUENTIAL no
NUL NETWORK yes
QUERY/3000 NETWORK no
QUERY-BY-EXAMPLE RELATIONAL yes
RAMIS HIERARCHICAL no
RENDEZVOUS RELATIONAL yes
RIQS INVERTED no
SEQUEL RELATIONAL yes
SQUARE RELATIONAL yes
SQUIRAL RELATIONAL yes
SYSTEM 2000 HIERARCHICAL no
TDMS HIERARCHICAL no

Figure 25. Data Structures and Complex Queries

relational operators. Reference to the tables in Figure 10
and Figures 13 through to 15 will reveal that none of the
languages surveyed include all apsects of these features,
however a number of languages, as shown in Figure 25,
do permit reasonably complex queries to be undertaken.

REFERENCES
ASTRAHAN, M.M. and CHAMBERLIN, D.D. (1975): Implemen

tation of a structured English query language, Comm. ACM,
Vol. 18,pp.580-588.

BARLOW, A.E. and CEASE, D.R. (1975): Command and control
system query language — Headquarters, United States Air
F orce, Information Systems Science.

BOYCE, R.F., CHAMBERLIN, D.D., KING, W.F. Ill and HAM
MER, M.M. (1974): Specifying queries as relational express
ions — the SQUARE data sub-language, Data Base Manage:
ment, J.W. Klimbie and K.L. Koffeman (Eds), North-
Holland, Amsterdam.

BOYCE, R.F. CHAMBERLIN, D.D., KING, W.F. Ill and HAMMER,
M.M. (1975): Specifying queries as relational expressions —
the SQUARE data sub-language, Comm. ACM, Vol. 18, pp.
621-628.

BURROUGHS (1977): Data management inquiry facility, Burr
oughs Corporation, Manual 5001472.

CARLSON, R.C. and KAPLAN, R.S. (1976): A generalised access
path model and its application to a relational data base sys
tem, Proc. int. Conf. Management of Data, ACM, New York,
pp. 143-154.

CARTER, A.J.T. (1975): Evaluation of data base management soft
ware, Infotech state of the art report on Data Base Systems,
Infotech, Maidenhead, England.

CODASYL (1971a): Data base task group report, April 1971,
CODASYL DBTG.

CODASYL (1971b): Feature analysis of generalised data base man
agement systems, CODASYL Systems Committee.

CODD, E.F. (1974): Seven steps to rendezvous with the casual user,
Data Base Management, J.W. Klimbie and K.L. Koffeman
(Eds), North-Holland, Amsterdam.

CODD, E.F. (1981): SQL/DS — What it means, Australasian Com-
puterworld, March 6,1981, pp 13-15.

COMPUTER SCIENCES OF AUSTRALIA (1977): MANAGE/
QUERY users guide, Manual E00252-01.

DATA GENERAL CORPORATION (1978): INFOS system user’s
manual (AOS), Data General Corporation, Manual 093-
000152-00.

The Australian Computer journal, Vol. 13, No. 4, November 1981

A Review of Data Base Query Languages

DATA GENERAL CORPORATION (1980): A guide to using the
Data General/Data base management system, Data General
Corporation, Manual 069-000025.

DATE, C.j. (1977): An introduction to data base systems, Second
edition, Addison-Wesley, Reading, Mass.

DAVIES, G.B. (1974): Management information systems - Concep
tual foundations, structure and development, McGraw-Hill,
New York.

DEEN, S.M. (1977): Fundamentals of data base systems, MacMillan,
London.

DEHENFFE, C. and HENNEBERT, H. (1976): NUL: A navigation
al user’s language for a network structured data base, Proc.
Int. Conf. Management of Data, ACM, New York, pp. 135-
142.

FRY, J.P. and SIBLEY, E.H. (1976): Evaluation of data base man
agement systems, Computing Surveys, Vol. 8, No. 1.

GURR, M. (1975): A user’s experience with RAMIS, Infotech state
of the art report on Data Base Systems, Infotech, Maiden
head, England.

HASEMAN, W.D. and WHINSTON, B.W. (1977): Introduction to
data management, Richard D. Irwin, Inc., Homewood, Illi
nois.

HAYWOOD, W. (1972): Retrieval and update, Data Base Manage
ment Systems, E.R. Iselin (Ed), Aust. Comp. Soc. (Queens
land Branch), Brisbane, Qld.

HEBDITCH, D.L. (1972): A simple terminal language for a data
base, Comp. Bull., January, pp. 3640.

HEINDEL, L.E. and ROBERTO, J.T. (1973): ARPL - A retrieval
process language, Comput. J., Vol. 17, pp. 113-116.

HEWS, W.L. and STOW, K.H. (1965): Information retrieval by
proper names, Data Processing Magazine, June 1965.

HEWLETT-PACKARD (1975): IMAGE/2000 Data base manage
ment system reference manual, Hewlett-Packard Co., Cuper
tino, California.

HONEYWELL (1977): Data Management IV — Query and repor
ting processor, data sheet 1P31.

HONEYWELL (1978): Data Management IV, data sheet 1P31.
HONEYWELL (1979): GCOS 8 Overview, data sheet 1P11.
HUHN, G.E. (1974): The data base in a critical on-line business en

vironment, Datamation, Vol. 20, No.9, pp. 52-56.
KELLOGG, C., KLAHR, P. and TRAVIS, L. (1976): A deductive

capability for data management, Systems for Large Data
Bases, P.C. Lockeman and E.J. Neuhold (Eds), North-Hol-
land, Amsterdam.

KROENKE, D. (1977): Data base processing, Science Research
Associates Inc.

MARTIN, J. (1975): Computer data base organisation, Prentice-
Hall, Englewood Cliffs, N.J.

MARTIN, J. (1972): Systems analysis for data transmission, Pren
tice-Hall, Englewood Cliffs, N.J.

McINTYRE, R.E. (1974): Powerful data management system for
small computers, Hewlett-Packard Review, pp. 2-10.

MEADOW, C. (1970): Man machine communication, Wiley, New
York.

The Australian Computer Journal, Vol. 13, No. 4, November 1981

MITTMAN, J. and BORMAN, L. (1975): Personalised data base
systems. Melville Publishing Co., Los Angeles, California.

OLLE, T.W. (1974): Data definition spectrum and procedurality
spectrum in data base management systems. Data Base
Management, J.W. Klimbie and K.L. Koffeman (Eds), North-
Holland, Amsterdam.

PALMER, I.R. (1975): Data base systems - A practical reference,
QED Information Science, Inc., Wellesly, Massachusetts.

ROBINSON, K.A. (1975): Relational data base techniques, Info
tech state of the art report on Data Base Systems, Infotech,
Maidenhead, England.

ROBINSON, M.A. (1981): A navigational query language for a
CODASYL-style data base, M.Sc. Thesis, Department of
Computer Science, Monash University.

SHNEIDERMAN, B. (1978): Improving the human factors aspect
of data base interactions, ACM Trans. Data Base Sys., Vol.
3, pp. 417-439.

SHU, N.C., HOUSEL, B.C. and LUM, V.Y. (1975): CONVERT:
A high level language for data conversion, Comm. ACM,
Vol. 18, pp. 557-567.

SIBLEY, E.H. (1976): The development of data base technology,
Computing Surveys, Vol, 8, No. 1.

SMITH, B. (1968): SPECOL — A computer enquiry language for
the non-programmer, Comput. J., Vol. 11, p. 121.

SMITH, J.M. and CHANG, P.Y. (1975): Optimising the perfor
mance of a relational algebra data base interface, Comm.
ACM, Vol. 18, No. 10.

SPROWLES, R.C. (1976): Management data bases, Wiley/Hamil
ton, Santa Barbara, California.

SUNDGREN, B. (1975): Theory of data bases, Petrocelli/Charter,
New York.

SWENSON, D.E. (1973): Performance measures for a data base
management system, Ph.D. Thesis, Purdue University.

TS1CHRITZIS, D.C. and LOCHOVSKY, F.H. (1977): Data base
management systems, Academic Press, New York.

ZLOOF, M.M. (1977): Query-By-Example — The invocation and
definition of tables and forms, Documentation of the James
Martin World Seminar, pp. 288-303.

BIOGRAPHICAL NOTE
Murray Robinson became a programmer with the

Victorian Railways in 1964, progressing to a systems
programmer and later a systems analyst. Whilst employed
by the Railways, he completed the Diploma of Business
Studies (EDP) by part-time study. In 1970 he became a
lecturer with Caulfield Institute of Technology, the
position which he still holds. He completed his MSc Thesis
in June 1981, the result of which is still pending. His main
interests are in data base systems.

ANNOUNCEMENTS

ABOUT THIS ISSUE
The present special issue was edited by Tony Montgomery of Monash University, who is well known

to readers of the Journal as my predecessor in the job of Editor. A large number of papers were received in
response to our call for material, and from these six were selected by the Guest Editor to make up the 52
pages allocated to this issue, with particular attention being paid to material describing work in the Austra
lian computing industry. Regrettably, much publishable material had to be excluded from the issue owing
to page limitations, and will have to gradually appear over 1982. We are grateful to the authors for their
interest, and to the Guest Editor for his time and effort.

NEXT SPECIAL ISSUE
The Australian Computer Journal will publish a special issue on Software Engineering in May 1982.

Research Papers, Tutorial Articles, Industry Case Studies and other types of material on the subject are
welcome. Both full papers and short communications will be considered. Material should be submitted to
the Guest Editor for the issue at the following address:

Professor P.C. Poole, Guest Editor,
ACJ Special Issue on Software Engineering,
Department of Computer Science,
University of Melbourne,
Parkville, Vic, 3052, Australia.
Due date for full papers, complete with diagrams, authors’ biography and other subsidiary material,

is 1 February 1982, and short papers are due by 15 February.

CHANGE IN EDITORSHIP
The present Editor will be relinquishing his office in December 1981 to go overseas, and Dr. John

Lions of the University of New South Wales will become the next Editor. Henceforth all material for
publication should be sent to:

ACJ Editor,
c/- PO Box N26,
Grosvenor Street,
Sydney, NSW, 2000, Australia.
Material currently under consideration will be forwarded to the Sydney office and authors should

suffer no undue inconvenience.

160 The Australian Computer Journal, Vol. 13, No. 4, November 1981

(Continued from page i)

conference will be held at Wrest Point and the University of
Tasmania, both venues being fairly close to the exhibition
halls.

For details regarding the exhibition, contact Riddell
Exhibition Promotions Pty Ltd, 166 Albert Road, South
Melbourne, 3205. (03) 699-1066.

MEMORY DIALER
A telephone “memory dialer” has been launched on

the Australian market.
The Alpha 1, by Interquartz, is designed for any tele

phone set, at home or in the office or can be operated
through a PABX system.

It makes phone dialing sure and simple — as simple as
pushing a single button.

The Alpha 1 stores more phone numbers than any
other machine on the market. It memorises 28 phone num
bers in addition to 50 plus name/phone number pairs which
meets the needs of most businessmen or householders.

The memory dialer stores and dials telephone num
bers of up to 16 digits which is ideal for overseas phone
numbers.

A fluorescent read-out screen shows alphabets and
numbers and communicates with the user by 14 different
messages.

This screen “searches" for names and telephone num
bers and instantly advises which button to push.

The system, which incorporates a digital clock
features an automatic audio signal and message on the read
out screen to remind the user when to redial a number.

Useful for calculating the cost of long-distance calls is
the elapse timer.

It also features push button dialing if the number you
are calling has not been programmed into the memory
bank.

The Interquartz Alpha I is available throughout Aust
ralia from Dataprint Pty Ltd, and Barbright Australia Pty
Ltd, Melbourne. It is 33cm long, 20cm wide and stands
8cm high. It is designed as a rest for a standard telephone
unit.

CALL FOR PAPERS
A call for papers has been issued by the organisers of

the Ninth Australian Computer Conference, to be held in
Hobart next year.

The chairman of the organising committee, Mr Tony
Haigh, of Hobart, said today intending authors were being
asked to nominate the title of their paper by 31 December.

The conference, with the theme Native Technology,
is to be held from 23-27 August.

Papers are also being called for a schools symposium,
being held in conjunction with the main conference, with
the title Students, Teachers, Computers.

Mr. Haigh said it had been four years since the last
national conference was held, and there had been tremen
dous developments in technology in that time.

Areas to be covered included security and computer
crime, data communications, satellites and Telecom, com
puters in Government, social issues and technological
change, robotics, the software and hardware industries, and
computers in medical and health services.

Intending authors were invited to nominate papers in

The Australian Computer Journal, Vol. 13, No. 4, November 1981

any of these areas, but papers on new user experiences and
new techniques and practices were also welcomed, he said.

People wishing to submit papers for either the main
conference or the schools symposium should write to the
papers committee, at PO Box 216, Sandy Bay, Tasmania,
7005.

Super Instructor 80 with 12K Basic in ROM plus 16K RAM.

APPLIED TECHNOLOGY TAKES ON
THE BIG BOYS

Applied Technology, Pymble NSW, pioneer in the
Australian personal computing field, has formulated a
number of ‘package deal’ systems, tailored to meet the
needs of the expanding personal computing market.

The heart of all these systems is the now famous
DGZ80 single board S100/Z80 computer. With over 1000
DGZ80 systems now in use, Applied Technology can claim
to have the most popular S100/Z80 kit on the Australian
market. They have found wide acceptance in universities,
schools, technical colleges and industry. Customers include
computer companies such as IBM and ICL as well as
Departments of Defence, CSIRO and Telecom. The
DGZ80 offers a combination of features which really put
it in a class of its own. It has 2K on-board ROM, 2K on
board RAM, Zilog PIO and CTC, power-on-jump, and is
supported with a super powerful monitor programme
(DGOS) in ROM.

Applied Technology’s ‘base system’ is their Super
Instructor 80. It includes the DGZ80, the MW640 VDU and
Keyboard. The VDU is memory mapped, with a 64
character by 16 line format and has upper and lower case.
Printer port and elaborate I/O facilities are available.
Expansion is ‘free’ in that the system is SI00 right from the
start.

The base system has been taken a step further with
the addition of their ‘Basic 80’ pack. This includes Micro
world Basic in ROM and 16K of RAM.

COLOUR MATCH COMPUTER A FIRST
A new colour control system, the first of its kind to

be used for Masterbatch colour selection in Australia, has
been purchased by Hoechst Australia Limited.

Hi

Mr Tim Boyce, TSL Pigments, Hoechst Altona tries out the new
colour control system.

The machine is valued at $75,000 and has been instal
led in the TSL Pigments Laboratory at the Hoechst plant in
Altona. This innovative computer will match colours and
formulate colourants according to specified components
and it will correct production batches to standard colours.

The use of this computer will supersede colour selec
tion processes currently used, thus making available to
Hoechst customers a more efficient and highly accurate
colour matching system. The computer is an integral part
of the formulation and matching service for Remafin*
Masterbatches offered by Hoechst.

The computer was supplied by Applied Color Sys
tems Inc. of New Jersey, USA. Mr Max Hall, Marketing
Manager of R and D Instruments, who market the
computer in Australia, supplied the following technical
details.

Computer Hardware — Digital Equipment Corpora
tion processor PD11/03L with RL01 hard disc storage
VT100 video terminal LAI20 line printer. Interfaced to
the processor is an Applied Colour Systems Spectro-sensor
which is the measuring instrument used to gauge the colour
of the standards and samples so that colour matching for
mulas can be predicted.

The Hewlett Packard X/Y plotter is used as a periph
eral to plot raw spectral data.

STORAGE TECHNOLOGY CORPORATION
ANNOUNCES OEM AGREEMENT WITH
NCR CORPORATION

Storage Technology Peripherals Corporation has an
nounced that it has signed a three-year, multimillion dollar
contract to supply tape subsystems to NCR Corporation, of
Dayton, Ohio.

NCR will use the tape subsystems in conjunction with
their 8000-series central processor units. The computer
company evaluated Storage Technology’s tape subsystems
for over a year before executing the contract.

Storage Technology Corporation has been delivering
other tape subsystems to NCR micrographics since 1978,
as a component of NCR’s computer output microfilm
systems. Storage Technology Peripherals Corporation will
continue to supply NCR with those units under the new
contract.

/V

Storage Technology Peripherals Corporation is the
original equipment manufacturer (OEM) development and
marketing subsidiary of Storage Technology Corporation
of Louisville, Colorado, USA.

Storage Technology produces computer data storage
subsystems, high-speed printers, and telecommunications
products.

FIBRE OPTICS COMMUNICATIONS
INTERFACE

Perkin-Elmer Data Systems announces a new com
munications interface for use with the firms 32-bit
Megamini computer systems and RS-232 interfaced devices.

The Single Channel Fibre Optic Converter provides an
effective solution for connecting remote RS-232 devices to
Perkin-Elmer computer systems in environments where
standard wire links would be unreliable, and security is a
requirement. The converter supports full duplex asynchro
nous data communications transmission speeds of up to
19.2K band over a fibre optic cable at distances up to one
kilometre.

Fibre Optics provide a viable communications
solution where problems such as corrosive and explosive
atmospheres, or electrical interference, exist between the
host computer and remote RS-232 devices.

PORTABLE PROGRAMMABLE POWERLINE
DISTURBANCE MONITOR

The Model 3600 portable powerline disturbance
monitor from Franklin Electric, Dandenong, Victoria, in
corporates dual microprocessors and 10K of memory.
Designed to provide the ultimate in sophisticated line
monitoring, it features a high degree of flexibility and ease
of operation.

The 3600 detects, classifies and measures amplitude
and duration of under and over-voltages, noise pulses which
exceed operator-determined thresholds and under or over
frequency conditions. Standard features include: alpha
numeric printout; simultaneous monitoring of three AC
phases and one DC channel; Keyboard entry of parameters;
LED display of settings, inputs and clock; built in test
facility; RS232 interface with selectable baud rate; internal
uninterrupted power supply; Post Threshold Tracking; auto
and manually initiated status printout; ‘Standby’ mode for
portability without resetting; rugged briefcase pack - com
plete unit weighs less than 10 kg. Factor options available.

The Australian Computer Journal, Vol. 13, No. 4, November 1981

oiivimro
ON COMPUTER SYSTEMS

f|g
Large range of peripherals & software at
DIRECT IMPORT PRICES
Own a TRS 80? You can still SAVE on
programs and hardware.

DICK SMITH
ELECTRONICS

Wollongong290 3377 28 3800Sydney
Blakehurst 546 7744Broadway 211 3777
Auburn642 8922 648 0558Chuliora
Melbourne 67 9834Gore Hill 439 5311
RichmondParramatta 683 1133 428 1614
SpnngvaleNorth Ryde B88 3200 547 0522
BurandaBrookvale 93 0441 391 6233

Chermside 59 6255 Newcastle
Fyshwich 80 4944 (Opening Soon)
Adelaide 212 1962
Perth 328 6944
Cannington 451 8666

Pinpoint power
problems ...

fast!

Portable Model 3600 Powerline Disturbance
Monitor can track three AC phases and one
DC Channel simultaneously, for fluctuations
likely tocause problems in sensitive equip
ment. Push button keyboard for programming
parameters . . LED display .. Large thermal
print out tape.. RS232 interface .. all mounted
in shock protected briefcase.

Franklin Electric
Victoria Tel: (03) 792 9431. Telex: 37416
N.S.W. Tel: (02) 439 6633 Qld. Tel: (07) 524 059 FE 002

DSE947RB

informationenomeerinG
INFORMATION ENGINEERING (AUST.) PTY. LTD.
PO BOX 110, GORDON, NSW 2072 • Ph (02) 498 8199, Telex 24434 INFOCM

WHO ARE WE?
Information Engineering is both a Methodology and a Company. The Methodology is a set of
techniques for identifying and implementing effectively the data resource of an organization.
The Company delivers this methodology (termed INFOMETHOD) through training courses,
documentation and consulting.

WHY USE INFORMATION ENGINEERING?
The communication Medium of Information Engineering is the Data Model. This is a graphic
representation of the data structure of the organization supported by detailed definitions.
It acts, therefore, as an effective and precise communication medium between user and data
processing personnel. They can then perform their appropriate roles more easily —
Management designing and accessing the data resource, and Data Processing supporting
and organizing the data resource with appropriate hardware and software.

OFFICES IN AUSTRALIA, N.Z., & U.S.A. ALSO REPRESENTED IN HONG KONG & SINGAPORE

A paper by Clive Finkelstein, Managing Director of Information Engineering (Aust) Pty Ltd appears on page 127.

The Australian Computer Journal is an official publication of the
Australian Computer Society Incorporated.

OFFICE BEARERS: President: G.E. Wastie; Vice-Presidents:
R.C.A. Paterson, M.G. Jackson; immediate past president: A.R.
Benson; National treasurer: R.A. Hamilton; Chief executive
officer: R.W. Rutledge, PO Box N26, Grosvenor Street, Sydney,
2000, telephone (02) 267-5725.

EDITORIAL COMMITTEE: Editor: C.K. Yuen, CSIRO Division of
Computing Research. Associate Editors: J.M. Bennett, T. Pearcey,
P.C. Poole, A.Y. Montgomery, J. Lions.

SUBSCRIPTIONS: The annual subscription is $20.00. All subscrip
tions to the Journal are payable in advance and should be sent
(in Australian currencyJ to the Australian Computer Society Inc.,
PO Box N26, Grosvenor Street, Sydney, 2000. A subscription form
may be found below.

PRICE TO NON-MEMBERS: There are now four issues per annum.
The price of individual copies of back issues still available is $2.00.
Some already out of print. Issues for the current year are available
at $5.00 per copy. All of these may be obtained from the National
Secretariat, PO Box N26, Grosvenor Street, Sydney, 2000. No trade
discounts are given, and agents should recover their own handling
charges.

CONTRIBUTIONS: All material for publication should be sent to:
Editor, Australian Computer Journal, PO Box N26, Grosvenor
Street, Sydney, 2000. Prospective authors may wish to consult man
uscript preparation guidelines published in the May 1980 issue. The
paragraphs below briefly summarise the essential details.

Types of Material: Four regular categories of material are published:
Papers, Short Communications, Letters to the Editor and Book
Reviews. Generally speaking, a paper will discuss significant new
results of computing research and development, or provide a com
prehensive summary of existing computing knowledge with the aim
of broadening the outlook of Journal readers, or describe impor
tant computing experience or insight. Short Communications are
concise discussions of computing research or application. A letter to
the Editor will briefly comment on material previously appearing in
the Journal or discuss a computing topic of current interest. Des
criptions of new software packages are also published to facilitate
free distribution.

Refereeing: Papers and Short Communications are accepted if
recommended by anonymous referees, Letters are published at the
discretion of the Editor, and Book Reviews are written at the
Editor’s invitation upon receipt of review copies of published books.
All accepted contributions may be subject to minor modifications
to ensure uniformity of style. Referees may suggest major revisions
to be performed by the author.

MEMBERS: The current issue of the Journal is supplied to personal
members and to Corresponding institutions. A member joining part
way through a calendar year is entitled to receive one copy of each
issue of the Journal published earlier in that calendar year. Back
numbers are supplied to members while supplies last, for a charge of
$2.00 per copy. To ensure receipt of all issues, members should
advise the Branch Honorary Secretary concerned, or the National
Secretariat, promptly of any change of address.

MEMBERSHIP: Membership of the Society is via a Branch.
Branches are autonomous in local matters, and may charge dif
ferent membership subscriptions. Information may be obtained
from the following Branch Honorary Secretaries. Canberra: PO Box
446, Canberra City, ACT, 2601. NSW: Science House, 35-43
Clarence St, Sydney, NSW, 2000. Qld: Box 1484, GPO, Brisbane,
Qld, 4001. SA: Box 2423, GPO, Adelaide, SA, 5001. WA: Box
F320, GPO, Perth, WA, 6001. Vic: PO Box 98, East Melbourne,
Vic, 3002. Tas: PO Box 216, Sandy Bay, Tas, 7005.

Proofs and Reprints: Page proofs of Papers and Short Communi
cations are sent to the authors for correction prior to publication.
Fifty copies of reprints will be supplied to authors without charge.
Reprints of individual papers may be purchased from the Printer
(Publicity Press). Microfilm reprints are available from University
Microfilms International, Ann Arbor/London.

Format: Papers, Short Communications and Book Reviews should
be typed in double spacing on A4 size paper, with 2.5cm margins
on all four sides. The original, plus one copy (preferably two for
Papers) should be submitted. References should be cited in standard
Journal form, and generally diagrams should be ink-drawn on
tracing paper or board with stencil or Letraset lettering. Papers and
Short Communications should have brief Abstracts, Keyword lists
and CR categories on the leading page, with authors’ affiliations as
a footnote. The authors of an accepted Paper will be asked to
supply a brief biographical note for publication at the end.

AUSTRALIAN COMPUTER
JOURNAL

Subscription/Change of Address Form

Name..

Current Address...

□ Please enrol me as subscriber for 1982, l enclose $20.00.

□ Please record my new address as shown above. I attach
below the mailing label for the last received issue.

ATTACH LABEL HERE

Send all correspondence regarding subscriptions to PO Box
N26, Grosvenor Street, Sydney, 2000, Australia. Photocopies
of this form acceptable.

This journal is Abstracted or Reviewed by the following
services:

Publisher Service
ACM

ACM
AMS
CSA

ENGINEERING
INDEX INC.
INSPEC
INSPEC
SPRINGER-
VERLAG

Bibliography and Subject Index of Current
Computing Literature.
Computing Reviews.
Mathematical Reviews.
Computer and Information Systems Abstracts.
Data Processing Digest.

Engineering Index.
Computer and Control Abstracts.
Electrical and Electronic Abstracts.
Zentralblatt fur Mathematick und ihre Grenz-
gebiete.

Copyright © 1981. Australian Computer Society Inc.

Production Management: Associated Business Publications, Room
104, 3 Smail Street, Ultimo, NSW 2007 (PO Box 440, Broadway,
NSW 2007). Tel: 212-2780,212-3780.
AH advertising enquiries should be referred to the above address.

Printed by: Publicity Press (NSW) Pty Ltd, 66 O’Riordan Street,
Alexandria, NSW 2015.

